SETHU INSTITUTE OF TECHNOLOGY

(An Autonomous Institution) Pulloor, Kariapatti – 626 115, Virudhunagar District (An Autonomous Institution affiliated to Anna University, Chennai)

CURRICULUM & SYLLABI

B.TECH. - CHEMICAL ENGINEERING

REGULATION 2019 CHOICE BASED CREDIT SYSTEM

Approved in the Academic Council Meeting on 29.10.2020

CHAIR

í

١

ACADEMIC COUNCIL CHAIRMAN ACADEMIC COUNCIL Sethu Institute of Technology Pulloor, Kariapatti - 625 115

İ

DEPARTMENT

DEPARTMENT OF CHEMICAL ENGINEERING

Chairperson Board of Studies Chemical Engineering Sethu Institute of Technology, Pulloor, Kariapatti - 626 115.

SETHU INSTITUTE OF TECHNOLOGY

VISION

• To promote excellence in technical education and scientific research for the benefit of the society

MISSION

- To provide quality technical education to fulfill the aspiration of the student and to meet the need of the industry
- To provide holistic learning ambience
- To impart skills leading to employability and entrepreneurship
- To establish effective linkage with industries
- To promote research and development activities
- To offer service for the development of society through education and technology

CORE VALUES

• Quality, Commitment, Innovation, Team work, Courtesy.

QUALITY POLICY

- To provide quality technical education to the students
- To produce competent professionals and contributing citizens
- To contribute for the up-liftment of the society

DEPARTMENT OF CHEMICAL ENGINEERING

VISION

To be an eminent department producing competent Chemical Engineers for the benefit of industry and society

MISSION

- To provide academic excellence through quality technical education to meet the needs of changing technology
- To set up state-of -the art facilities and promote teaching learning and research activities
- To develop entrepreneurial skills and employability opportunities
- To establish collaboration with industries for technology transfer
- To facilitate center of excellence in research and create an environment for nurturing innovative capabilities
- To address societal needs by imparting professional and ethical values

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO-I

Our graduates will possess strong knowledge to solve real time problems in Chemical and allied industries. (Core Competency/Technical Accomplishments)

PEO-II

Our graduates will have the ability to solve contemporary issues with ethical values and professional skills. (**Professionalism**)

PEO-III

Our graduates will exhibit proficiency through sustained learning to adapt changes in technologies. (Life Long Learning)

PROGRAMME SPECIFIC OUTCOME (PSOs)

Graduates will be able to

- Achieve deep knowledge in various unit processes and operations, reaction engineering to design chemical engineering equipment integrating safety procedures.
- Develop mathematical models of real time problems including design of experiments, study and interpretation of data to provide valid conclusions in Chemical engineering.

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

- Apply the knowledge of mathematics, sciences and engineering fundamentals to solve complex engineering problems (**Engineering knowledge**).
- Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural and engineering sciences (**Problem analysis**).
- Design solutions for complex engineering problems and design system components that meet the specified needs with appropriate consideration for public health and safety, cultural, societal and environmental concerns (**Design/development of solutions**).
- Conduct investigations on complex engineering problems in design and analysis of unit operations and processes using research based knowledge and methods including design of experiments, analysis and interpretation of data and synthesis of information to attain valid conclusions (Conduct investigations of complex problems).
- Apply appropriate techniques and modern simulation tools to solve engineering problems (Modern tool usage).
- Apply reasoning informed by the contextual knowledge to assess societal, health, safety,

legal and cultural issues and the consequent responsibilities relevant to the engineering practice (**The engineer and society**).

- Understand the impact of the engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development (**Environment** and sustainability).
- Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice (**Ethics**).
- Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary environments (**Individual and team work**).
- Communicate effectively with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (**Communication**).
- Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments (**Project management and finance**).
- Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life-long learning).

PROGRAMME SPECIFIC CRITERIA

- The curriculum must provide a thorough grounding in basic sciences including chemistry, physics and biology, with advanced level content as appropriate to the objectives of the program.
- The curriculum must include engineering application of basic sciences to design, analyze and control physio-chemical and biological processes considering safety aspects.

SETHU INSTITUTE OF TECHNOLOGY

Estd1995

Pulloor, Kariapatti –626115 (An Autonomous Institution)

B.TECH. Degree Programme

CHOICE BASED CREDIT SYSTEM

CURRICULUM (Regulations2019)

BACHELOR OF TECHNOLOGY IN CHEMICAL ENGINEERING

OVERALL COURSE STRUCTURE COMPARISON

S.NO	CATEGORY	ļ	SIT	AICTE		ANN R	NA UNIV -2019
1.	HUMANITIES & SCIENCE	9	6%	12	8%	17	10%
2.	BASIC SCIENCE	27.5	17%	25	16%	23	14%
3.	ENGINEERING SCIENCE	18	11%	24	15%	22	13%
4.	PROFESSIONAL CORE	63.5	39%	48	30%	68	40%
5.	PROFESSIONAL ELECTIVE	18	11%	18	11%	21	12%
6.	OPEN ELECTIVE	12	7%	18	11%	6	4%
7.	PROJECTS	14	9%	15	9%	13	8%
	TOTAL	162	100%	160	100%	170	100%

COURSECREDITS-SEMESTERWISE

Branch	Ι	II	III	IV	V	VI	VII	VIII	TOTAL
СН	20.5	16.5	21	23	22.5	23	21.5	14	162

SEMESTER I

COURSE	COURSE TITLE	CATEGORY	L	Т	P	С		
CODE								
THEORY				1	1	I		
19UEN101	English for Technical Communication	HS	2	0	0	2		
19UMA102	Engineering Mathematics-I	BS	3	1	0	4		
19UPH103	Engineering Physics	BS	3	0	0	3		
19UCY104	Engineering Chemistry	BS	3	0	0	3		
	Problem Solving and Python							
19UCS108	Programming	ES	3	0	0	3		
19UME109	Engineering Graphics	ES	3	1	0	4		
PRACTICAL					1	I		
19UGS112	Basic Sciences Laboratory	BS	0	0	2	1		
19UME111	Engineering Practices Laboratory	ES	0	0	3	1.5		
	Problem Solving and Python							
19UCS110	Programming Laboratory	ES	0	0	3	1.5		
MANDATORY		1	L	1	1	<u> </u>		
19UGM131	Induction Programme HS		0	0	0	P/F		
	TOTAL							

SEMESTER II

COURSE CODE	COURSE TITLE CATEGORY			Т	Р	С
THEORY						
19UEN201	Communication Skills for Professionals	HS	0	0	2	1.5
19UMA207	Calculus, Complex Analysis, Transform Techniques	3	1	0	4	
19UPH203	Material Physics	BS	3	0	0	3
19UCY204	Environmental Science	BS	3	0	0	3
19UCH205	Introduction to Chemical Engineering	PC	3	0	0	3
19UEE226	Basic Electrical and Electronics Engineering	ES	3	0	0	3
PRACTICAL		<u> </u>				
19UGS210	Energy Science and Environmental Science Laboratory	BS	0	0	3	1.5
19UEE221	EE221 Basic Electrical and Electronics Engineering ES Laboratory ES				3	1.5
	TOTAL		17	1	8	20. 5

SEMESTER III

COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THEORY					I	
19UMA326	Transform Techniques and Partial Differential Equations	BS	3	1	0	4
19UCH302	Process Chemistry	ES	3	0	3	4.5
19UCH303	Heat Power Engineering	РС	3	0	0	3
19UCH304	Fluid Flow Operations	РС	2	1	3	4.5
19UCH305	Chemical Process Calculations	РС	2	1	0	3
19UCH306	Engineering Materials for Process Industries	РС	2	0	0	2
MANDATORY		I			1	
19UGM332	Biology for Engineering Applications	BS	2	0	0	P/ F
		TOTAL	1	3	6	21
			7			

SEMESTER IV

COURSE	COURSE TITLE	CATEGORY	L	Т	Р	С
CODE						
THEORY		I				
19UMA423	Numerical Methods	BS	3	1	0	4
19UCH402	Chemical Engineering Thermodynamics	Chemical Engineering Thermodynamics PC				3
19UCH403	Heat Transfer	eat Transfer PC				4.5
19UCH404	Mechanical Operations	3	0	3	4.5	
19UCH405	Chemical Process Industries PC			0	0	3
19UCH406	Mass Transfer - I	РС	2	1	0	3
PRACTICAL				1	1	I
19UCH407	Seminar	Р	0	0	2	1
19UGS431	Reasoning and Quantitative Aptitude	BS	0	0	2	1
MANDATORY						
19UGM431	Gender Equality	HS	1	0	0	P/F
		TOTAL	15	4	10	24

SEMESTER V

COURSE	COURSE TITLE	CATEGORY	L	Т	P	C
CODE						
THEORY					1	1
19UCH501	Process Economics and Management	HS	2	0	0	2
19UCH502	Mass Transfer - II	PC	2	1	0	3
19UCH503	Chemical Reaction Engineering - I	PC	2	1	0	3
PE - I	Professional Elective - I	PE	3	0	0	3
PE - II	Professional Elective - II	PE	3	0	0	3
OE - I	Open Elective - I	OE	3	0	0	3
PRACTICAL					1	1
19UCH507	Chemical Reaction Engineering Lab	PC	0	0	3	1.5
19UCH508	Mass Transfer Lab	PC	0	0	3	1.5
19UGS533	Interpersonal Skills Lab	HS	0	0	3	1.5
MANDATORY					L	
19UCH509	Creative Thinking and Innovation	HS	0	0	2	1
		TOTAL	16	2	9	22.5

SEMESTER VI

COURSE	COURSE TITLE	CATE	L	Т	Р	С
CODE		GORI				
THEORY	1			1		
19UCH601	Chemical Reaction Engineering - II	PC	2	1	0	3
19UCH602	Process Instrumentation Dynamics and	РС	2	1	3	
	Control					4.5
19UCH603	Process Equipment Design	PC	3	1	0	4
PE - III	Professional Elective - III	PE	3	0	0	3
OE - II	Open Elective - II	OE	3	0	0	3
PRACTICAL				•		
19UCH606	Process Computation Lab	PC	0	0	3	1.5
19UGS632	Soft Skills and Communication Lab	HS	0	0	3	1.5
19UCH607	Technical Project and product Development	Р	0	0	8	4
MANDATORY	Ĩ					
19UGM635	Indian Constitution	HS	0	0	1	0
		TOTAL	16	3	18	24.5

SEMESTER VII

COURSE	COURSE TITLE	CATEGORY	L	Τ	Р	C
CODE						
THEORY						
19UME701	Project Management and Finance	PC	3	1	0	4
19UCH702	Transport Phenomena	PC	3	1	0	4
19UCH703	Process Modeling and Simulation	3	1	0	4	
PE - IV	Professional Elective - IV	3	0	0	3	
PE - V	Professional Elective - V PE			0	0	3
OE - III	Open Elective - III	OE	3	0	0	3
PRACTICAI			I			<u> </u>
19UCH707	Process Design and Simulation Lab	PC	0	0	3	1.5
19UCH708	Summer Internship	Р	0	0	2	1
MANDATO	RY		L			
19UGM731	Professional Ethics and Human Values	Ethics and Human Values HS		0	0	2
	•	TOTAL	17	2	15	24.5

SEMESTER VIII

COURSE	COURSE TITLE	CATEGORY	L	Т	Р	С
CODE						
THEORY						
PE - VI	Professional Elective - VI	PE	3	0	0	3
OE - IV	Open Elective - IV	OE	3	0	0	3
PRACTICAL						
19UCH803	Project Work	Р	0	0	16	8
		TOTAL	6	0	16	14

HUMANITIES & SOCIAL SCIENCES (HS)

S.NO	COURSE	COURSE	COURSE TITLE	L	Т	Р	С
	CATEGORY	CODE					
1	HS	19UEN101	English for Technical Communication	2	0	0	2
2	HS	19UGM131	Induction Program	0	0	0	0
3	HS	19UEN201	Communication Skills for Professionals	0	0	2	1.5
4	HS	19UGM431	Gender Equality	1	0	0	0
5	HS	19UCH501	Process Economics and Management	2	0	0	2
6.	HS	19UGM507	Creative Thinking and Innovation	1	0	0	1
7	HS	19UGS533	Interpersonal Skills Lab	0	0	3	1.5
8	HS	19UGM635	Indian Constitution	0	0	1	0
9	HS	19UGS632	Soft Skills and Communication Lab	0	0	3	1.5
10	HS	19UGM731	Professional Ethics and Human Values	2	0	0	2
11	HS	19UME701	Project Management and Finance	3	0	0	3
	11				ΤΟ	TAL	14.5

BASIC SCIENCES (BS)

S.NO	COURSE	COURSE	COURSE TITLE	L	Т	Р	С
	CATEGORY	CODE					
1.	BS	19UMA102	Engineering Mathematics-I	3	1	0	4
2	BS	19UPH103	Engineering Physics	3	0	0	3
3	BS	19UCY104	Engineering Chemistry	3	0	0	3
4	BS	19UGS112	Basic Sciences Laboratory	0	0	2	1
5	BS	19UMA207	Calculus, Complex Analysis and Transform Techniques	3	1	0	4
6	BS	19UPH203	Material Physics	3	0	0	3
7	BS	19UCY204	Environmental Science	3	0	0	3
9	BS	19UGS210	Energy Science and Environmental Science Lab	0	0	3	1.5
10	BS	19UMA326	Transform Techniques and Partial Differential Equations	3	1	0	4
11	BS	19UGM332	Biology for Engineering Applications	2	0	0	0
11	BS	19UMA423	Numerical Methods	3	1	0	4
12	BS	19UGS431	Reasoning and Quantitative Aptitude	0	0	2	1
			·	·	TC	DTAL	31.5

ENGINEERING SCIENCES (ES)

S.NO	COURSE	COURSE	COURSE TITLE	L	Т	P	C
	CATEGORY	CODE					
1	ES	19UCS108	Problem Solving and Python Programming	3	0	0	3
2	ES	19UME109	Engineering Graphics	3	1	0	4
3	3 ES 19UME111 Engineering Practices Lab		0	0	3	1.5	
4	ES	19UCS110	Problem Solving and Python Programming Laboratory	0	0	3	1.5
5	ES	19UEE226	Basic Electrical and Electronics Engineering	3	0	0	3
6	ES	19UEE221	Basic Electrical and Electronics Engineering Lab	0	0	3	1.5
7	ES	19UCH302	Process Chemistry	3	0	3	4.5
	1	I		י ן	ГОТ	AL	19

PROFESSIONAL CORE (PC)

S.NO	COURSE	COURSE	COURSE TITLE				
	CATEGORY	CODE		L	Τ	Р	C
1	PC	19UCH205	Introduction to Chemical Engineering	3	0	0	3
2	РС	19UCH303	Heat Power Engineering	3	0	0	3
3	РС	19UCH304	Fluid Flow Operations	2	1	0	4.5
4	PC	19UCH305	Chemical Process Calculations	2	1	0	3
5	PC	19UCH306	Engineering Materials for Process Industries	2	0	0	2
6	РС	19UCH402	Chemical Engineering Thermodynamics	2	1	0	3
7	PC	19UCH403	Heat Transfer	2	1	3	4.5
8	PC	19UCH404	Mechanical Operations	3	0	3	4.5
9	PC	19UCH405	Chemical Process Industries	3	0	0	3
10	PC	19UCH406	Mass Transfer - I	2	1	0	3
11	PC	19UCH502	Mass Transfer - II	2	1	0	3
12	PC	19UCH503	Chemical Reaction Engineering - I	2	1	0	3
13	PC	19UCH508	Chemical Reaction Engineering Lab	0	0	3	1.5
14	PC	19UCH509	Mass Transfer Lab	0	0	3	1.5
15	PC	19UCH601	Chemical Reaction Engineering - II	2	1	0	3

16	PC		Process Instrumentation Dynamics				
		19UCH602	and Control	2	1	3	4.5
17	PC	19UCH603	Process Equipment Design	3	1	0	4
18	PC	19UCH607	Process Computation Lab	0	0	3	1.5
19	PC	19UCH701	Transport Phenomena	3	1	0	4
20	PC	19UCH702	Process Modeling and Simulation	3	1	0	4
21	PC	19UCH708	Process Design and Simulation Lab	0	0	3	1.5
					ΤΟ	TAL	65

PROJECT (P)

S.NO	COURSE CATEGORY	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	Р	19UCH409	Seminar	0	0	2	1
2	Р	19UCH507	Creative Thinking and Innovation	0	0	2	1
3	Р	19UCH609	Technical Project and Product Development	0	0	8	4
4	Р	19UCH709	Summer Internship	0	0	2	1
5	Р	19UCH803	Project Work	0	0	16	8
			TOTAL				15

PROFESSIONAL ELECTIVE (PE)

	COURSE	COURSE					
S.NO		CODE	COURSE TITLE	L	Т	Р	С
	CATEGORY	CODE					
		Chemic	al Engineering Allied Courses	1		1 1	
1	PE	19UCH901	Petroleum Refining Engineering	3	0	0	3
2	PE	19UCH902	Polymer Technology	3	0	0	3
3	PE	19UCH903	Fertilizer Technology	3	0	0	3
4	PE	19UCH904	Food Science and Technology	3	0	0	3
5	PE	19UCH905	Drugs and Pharmaceutical Technology	3	0	0	3
6	PE	19UCH906	Oil and Natural Gas Engineering	3	0	0	3
7	PE	19UCH907	Computational Fluid Dynamics	3	0	0	3
8	PE	19UCH908	Chemical Process Plant Safety	3	0	0	3
		Energy a	nd Environmental Engineering		I		
9	PE	19UCH909	Air Pollution and Control	3	0	0	3
10	PE	19UCH910	Waste Water Treatment and Recycling	3	0	0	3
11	PE	19UCH911	Solid Waste Management	3	0	0	3
12	PE	19UCH912	Alternative Energy Technology	3	0	0	3
13	PE	19UCH913	Environmental Impact Assessment	3	0	0	3
		1	Process Engineering				
14	PE	19UCH914	Bio Process Engineering	3	0	0	3

15	PE	19UCH915	Fermentation Technology	3	0	0	3
16	PE	19UCH916	Process Optimization	3	0	0	3
17	PE	19UCH917	Data Science for Engineers	3	0	0	3
18	PE	19UCH918	Pilot Plant and Scale Up studies	3	0	0	3
19	PE	19UCH919	Quality Management for Chemical Engineers	3	0	0	3
		Mod	lern Chemical Technology				
20	PE	19UCH920	Fluidization Technology	3	0	0	3
21	PE	19UCH921	Instrumental Methods of Analysis	3	0	0	3
22	PE	19UCH922	Nano Technology	3	0	0	3
23	PE	19UCH923	Extractive Metallurgy	3	0	0	3
24	PE	19UCH924	Modern Separation Processes	3	0	0	3
25	PE	19UCH925	Electrochemical Engineering	3	0	0	3
26	PE	19UCH926	Nuclear Science and Technology	3	0	0	3
					TO	ΓAL	78

LIST OF PROFESSIONAL ELECTIVES – PE

(SEMESTER WISE)

	COURSE	COURSE					
SL.NO.	CATEGORY	CODE	COURSE TITLE	L	Т	Р	C
		Professional	Elective – I (V Semester)			•	
1	PE	19UCH901	Petroleum Refining Engineering	3	0	0	3
2	PE	19UCH909	Air Pollution and Control	3	0	0	3
3	PE	19UCH915	Fermentation Technology	3	0	0	3
4	PE	19UCH921	Instrumental Methods of Analysis	3	0	0	3
		Professional	Elective – II (V Semester)				
1	PE	19UCH902	Polymer Technology	3	0	0	3
2	PE	19UCH903	Fertilizer Technology	3	0	0	3
3	PE	19UCH910	Waste Water Treatment and Recycling	3	0	0	3
4	PE	19UCH925	Electrochemical Engineering	3	0	0	3
		Professional H	Elective – III (VI Semester)			•	
1	PE	19UCH904	Food Science and Technology	3	0	0	3
2	PE	19UCH917	Data Science for Engineers	3	0	0	3
3	PE	19UCH911	Solid Waste Management	3	0	0	3
4	PE	19UCH923	Extractive Metallurgy	3	0	0	3

5	PE	19UCH914	Bio Process Engineering	3	0	0	3
	l	Professional I	Elective – IV (VII Semester)	-1	1		
1	PE	19UCH908	Chemical Process Plant Safety	3	0	0	3
2	PE	19UCH905	Drugs and Pharmaceutical Technology	3	0	0	3
3	PE	19UCH906	Oil and Natural Gas Engineering	3	0	0	3
4	PE	19UCH926	Nuclear Science and Technology	3	0	0	3
	1	Professional	Elective – V (VII Semester)	1	<u> </u>	1	
1	PE	19UCH924	Modern Separation Processes	3	0	0	3
2	PE 19UCH907 Computational Fluid Dynamics		3	0	0	3	
3	PE	19UCH922	Nano Technology	3	0	0	3
4	PE	19UCH912	Alternative Energy Technology	3	0	0	3
5	PE	19UCH920	Fluidization Technology	3	0	0	3
		Professional E	lective – VI (VIII Semester)	<u> </u>			
1	PE	19UCH913	Environmental Impact Assessment	3	0	0	3
2	PE	19UCH916	Process Optimization	3	0	0	3
3	PE	19UCH919	Quality Management for Chemical Engineers	3	0	0	3
4	PE	19UCH918	Pilot Plant and Scale Up studies	3	0	0	3

OPEN ELECTIVE (OE)

S.NO	COURSE	COURSE	COURSE TITLE	L	Τ	Р	C
	CATEGORY	CODE					
			V Semester				
1	OE - I	19UCH951	Corrosion Science and Engineering	3	0	0	3
			VI Semester				
2	OE - II	19UCH952	Energy Storage Systems	3	0	0	3
			VII Semester				
3	OE - III	19UCH953	Industrial Waste Management	3	0	0	3
			VIII Semester				
4	OE - IV	19UCH954	Waste to Energy Conversion	3	0	0	3
					TC	DTAL	12

LIST OF EMPLOYABILTY COURSES

S.	COURSE	COURSE TITLE	CATEGORY	L	Т	P	С
NO	CODE						
1	19UMA102	Engineering Mathematics –I	BS	3	1	0	4
2	19UPH103	Engineering Physics	BS	3	0	0	3
3	19UCY104	Engineering Chemistry	BS	3	0	0	3
4	19UCS108	Problem Solving and Python Programming	ES	3	0	0	3
5	19UME109	Engineering Graphics	ES	3	1	0	4
6	19UGS112	Basic Sciences Laboratory	BS	0	0	2	1
7	19UME111	Engineering Practices Lab	ES	0	0	3	1.5
8	19UCS110	Problem Solving and Python Programming Lab	ES	0	0	3	1.5
9	19UGM131	Induction Programme	HS	0	0	0	0
10	19UMA207	Calculus, Complex Analysis, Transform Techniques	BS	3	1	0	4
11	19UPH203	Material Physics	BS	3	0	0	3
12	19UCY204	Environmental Science	BS	3	0	0	3
13	19UCH205	Introduction to Chemical Engineering	РС	3	0	0	3
14	19UEE226	Basic Electrical and Electronics Engineering	ES	3	0	0	3

15	19UGS210	Energy Science and EVS Lab	BS	0	0	3	1.5
16	19UEE221	Basic Electrical and Electronics	ES	0	0	3	1.5
		Engineering Lab					
17	19UMA326	Transform Techniques and Partial	BS	3	1	0	4
		Differential Equations					
18	19UCH302	Process Chemistry	ES	3	0	3	4.5
19	19UCH303	Heat Power Engineering	РС	3	0	0	3
20	19UCH304	Fluid Flow Operations	РС	2	1	3	4.5
21	19UCH305	Chemical Process Calculations	РС	2	1	0	3
22	19UCH306	Engineering Materials for Process	РС	2	0	0	2
		Industries					
23	19UGM332	Biology for Engineering	BS	2	0	0	0
		Applications					
24	19UMA423	Numerical Methods	BS	3	1	0	4
25	19UCH402	Chemical Engineering	РС	2	1	0	3
		Thermodynamics					
26	19UCH403	Heat Transfer	РС	2	1	3	4.5
27	19UCH404	Mechanical Operations	РС	3	0	3	4.5
28	19UCH405	Chemical Process Industries	РС	3	0	0	3
29	19UCH406	Mass Transfer – I	РС	2	1	0	3
30	19UCH409	Seminar	Р	0	0	2	1
31	19UCH502	Mass Transfer – II	РС	2	1	0	3
32	19UCH503	Chemical Reaction Engineering - I	РС	2	1	0	3

33	19UCH508	Chemical Reaction Engineering Lab	РС	0	0	3	1.5
34	19UCH509	Mass Transfer Lab	РС	0	0	3	1.5
35	19UCH601	Chemical Reaction Engineering - II	РС	2	1	0	3
36	19UCH602	Process Instrumentation Dynamics	РС	2	1	3	4.5
		and Control					
37	19UCH603	Process Equipment Design	РС	3	1	0	4
38	19UCH607	Process Computation Lab	РС	0	0	3	1.5
39	19UCH701	Transport Phenomena	РС	3	1	0	4
40	19UCH702	Process Modeling and Simulation	РС	3	1	0	4
41	19UCH708	Process Design and Simulation Lab	РС	0	0	3	1.5
42	19UCH901	Petroleum Refinery Engineering	PE	3	0	0	3
43	19UCH902	Polymer Technology	PE	3	0	0	3
44	19UCH903	Fertilizer Technology	PE	3	0	0	3
45	19UCH906	Oil and Natural Gas Engineering	PE	3	0	0	3
46	19UCH908	Chemical Process Plant Safety	PE	3	0	0	3
47	19UCH909	Air Pollution and Control	PE	3	0	0	3
48	19UCH910	Waste Water Treatment and	PE	3	0	0	3
		Recycling					
49	19UCH913	Environmental Impact Assessment	PE	3	0	0	3
50	19UCH914	Bio Process Engineering	PE	3	0	0	3
51	19UCH916	Process Optimization	PE	3	0	0	3
52	19UCH918	Pilot Plant and Scale Up studies	PE	3	0	0	3
53	19UCH920	Fluidization Technology	PE	3	0	0	3

54	19UCH921	Instrumental Methods of Analysis	PE	3	0	0	3
55	19UCH922	Nano Technology	PE	3	0	0	3
56	19UCH923	Extractive Metallurgy	PE	3	0	0	3
57	19UCH924	Modern Separation Processes	PE	3	0	0	3
58	19UCH925	Electrochemical Engineering	PE	3	0	0	3
59	19UCH926	Nuclear Science and Technology	PE	3	0	0	3

LIST OF ENTREPRENEURSHIP COURSES

S.	COURSE						
NO	CODE	COURSE TITLE	CATEGORY	L	Τ	Р	С
1	19UCH501	Process Economics and Management	HS	3	0	0	3
2	19UCH904	Food Science and Technology	nology PE				3
3	19UCH905	Drugs and Pharmaceutical Technology	s and Pharmaceutical Technology PE				3
4	19UCH907	Computational Fluid Dynamics PE			0	0	3
5	19UCH911	Solid Waste Management	PE		0	0	3
6	19UCH912	Alternative Energy Technology	PE	3	0	0	3
7	19UCH915	Fermentation Technology	tion Technology PE		0	0	3
8	19UCH919	Quality Management for Chemical Engineers	PE	3	0	0	3

LIST OF SKILL AND DEVELOPMENT COURSES

	COURSE						
S. NO	CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
	CODE						
1	19UEN101	English for Technical Communication	HS	2	0	0	2
2	101JEN201	Communication Skills for	HS	0	0	2	1.5
2	190111201	Professionals					
4	19UGM431	Gender Equality	HS	1	0	0	0
5	19UGS431	Reasoning and Quantitative Aptitude	BS	0	0	2	1
6	19UGM507	Creative Thinking and Innovation	HS	1	0	0	1
7	19UGS533	Interpersonal Skills Lab	HS	0	0	3	1.5
8	19UGM635	Indian Constitution	HS	0	0	1	0
9	19UGS632	Soft Skills and communication Lab	HS	0	0	3	1.5
10	1011011000	Technical Project and Product	Р	0	0	8	4
10	19001009	Development					
11	10UCM721	Professional Ethics and Human	HS	2	0	0	2
11	190011/31	Values					
12	19UME701	Project Management and Finance	HS	3	0	0	3
13	19UCH709	Summer Internship	Р	0	0	2	1
14	19UCH803	Project Work	Р	0	0	16	8

INTERDISCIPLINARY COURSE

	COURSE	COURSE			OFFERING	
S.NO	CATEGORY	CODE	COURSE TITLE	CREDITS	DEPARTMENT	
1.	Interdisciplinary	19UCH954	Waste to Energy Conversion	3	CHEMICAL and CIVIL	
2.	Interdisciplinary	19UCH917	Data Science for Engineer	3	CHEMICAL AND CSE	

ONE CREDIT COURSES

	COURSE	COURSE			
S. NO		CODE	COURSE NAME	CREDITS	
	CATEGORY	CODE			
1.	OC	19UCH861	MATLAB for Chemical Engineering	1	
2.	OC	19UCH862	Simulation on Process Fundamentals	1	
3.	OC	19UCH863	Sugarcane Processing and its Products	1	
4.	OC	19UCH864	Dry Cement Manufacturing Process	1	
5	OC	19UCH865	Reclamation of Waste Lubricating Oils and its	1	
5.		170011005	Products.	1	
6.	OC	19UCH866	Pollution Control Engineering	1	
7.	OC	19UCH867	Enzymes for Environmental Applications	1	
8.	OC	19UCH868	Reclamation of Press Mud Wax	1	
9.	OC	19UCH869	Sensors for Air Pollution	1	
10.	OC	19UCH870	Waste Recycling from Pulp and Textile Mills	1	
11.	OC	19UCH871	Membrane Technology	1	
12.	OC	19UCH872	72 Pyrotechnics		

19UEN101 – ENGLISH FOR TECHNICAL COMMUNICATION L T PC

(Common to All Branches except CSBS)

OBJECTIVES:

- To enhance the vocabulary of students
- To strengthen the application of functional grammar and basic skills
- To improve the language proficiency of students

UNITI

Listening –Formal and informal conversations and comprehension. **Speaking-** introducing oneself – exchanging personal and social information-Reading – Skimming and Scanning. Writing-Sentence Formation, Formal Letters (Permission/Requisition) - Grammar - Parts of Speech - Tense - Vocabulary Development - Technical Word Formation- Prefix- suffix -Synonyms and Antonyms-Phrases and Clauses.

UNITII

Listening- Telephonic Conversations. Speaking- Pronunciation rules with Stress pattern. **Reading** – comprehension-pre-reading, post-reading- comprehension questions Writing – Punctuation rules, paragraph writing- topic sentence- main ideas- free writing, short narrative descriptions, Precise writing, Developing Hints - Report Writing (Industrial, Accident)-Grammar – Voice Vocabulary Development- Words from other languages in English.

UNIT III

Listening - Motivational speech by Great Speakers Speaking-Narrating daily events retelling short stories. Reading - Newspaper reading. Writing - Job application letter of Information (Transcoding)-Grammar Subject-Verb Transformation Agreement (Concord),— Vocabulary Development –Same word in different parts of speech

UNIT IV

Listening - Understating the instruction. Speaking-Intonation and preparing dialogue on various formal and informal situation Reading -Note Making from given text - Writing-Creating coherence, Essay writing with proper introduction and conclusion, Giving Instruction (Guidance/Procedure) -Grammar-Spot the Errors in English, Vocabulary Development- One word substitution.

TOTAL = 30 PERIODS

COURSE OUTCOMES

After successful completion of this course the students will be able to:

- Apply grammar effectively in writing meaningful sentences and paragraphs.
- Exhibit reading skills and comprehension to express the ideas in the given text. •
- Develop writing skills to present the ideas in various formal situations. •
- Develop oral fluency to express the ideas in various formal situations. ٠
- Exhibit writing skills to prepare reports for various purposes. •

8

7

7

8

2002

TEXT BOOK:

KN Shoba, Lourdes Joavani Rayen, **Communicative English**, New Delhi, Cambridge University Press, 2017

REFERENCE BOOKS:

1. Raman, Meenakshi, Sangeetha Sharma, **Business Communication**, New Delhi, Oxford University Press, 2014.

2. Lakshminarayanan.K.R,**EnglishforTechnicalCommunication**, Chennai, Scitech Publications (India) Pvt. Ltd, 2004.

3. Rizvi. Asraf M, **Effective Technical Communication**, New Delhi, Tata McGraw-Hill Publishing Company Limited, 2007.

19UMA102

ENGINEERING MATHEMATICS – I

(Common to All Branches-Except CSBS) L T PC

3104

OBJECTIVES:

- To make the students capable of identifying linear equations based problems (Eigen Value) from practical areas and obtain the Eigen value oriented solutions in certain cases.
- To widen the students' knowledge base on linear algebra, growth rate computation and application of integrals.
- Able to integrating various types of functions using various integration methods.
- To familiarize the students with the basic rules of differentiation and use them to find derivatives of products and quotients of functions
- To apply these mathematical concepts (matrix theory, differentiation and integration) in engineering field.

UNIT I: MATRICES

Eigen value and eigenvector of a real matrix – Characteristic equation – Properties – Cayley-Hamilton theorem (excluding Proof) – Orthogonal reduction – (transformation of a symmetric matrix to diagonal form) – Quadratic form – Reduction of quadratic form to canonical form by orthogonal transformation

UNIT II : DIFFERENTIAL CALCULUS

Introduction - Definition of derivatives - Limits and Continuity - Differentiation techniques

(Product rule, Quotient rule, Chain rule) – Successive differentiation (nth derivatives) – Leibnitz theorem (without proof) – Maclaurin's series – Physical Applications (Newton's law of cooling–Heat flow problems, Rate of decay of radioactive materials - Chemical reactions and solutions, Ohm's law, Kirchoff's law – Simple electric circuit problems)

UNIT III : FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives – Euler's theorem for homogenous functions – Total derivatives – Differentiation of implicit functions – Jacobian – Taylor's expansion – Maxima and Minima – Method of Lagrangian Multipliers.

UNIT IV : INTEGRAL CALCULUS

Definitions and concepts of integrals – Methods of integration (Decomposition method, Substitution method, Integration by parts) – Definite integrals – Properties and problems – Reduction formulae – Beta and Gamma functions.

UNIT V : MULTIPLE INTEGRALS

Double integration – Cartesian and Polar coordinates – Change of order of integration – Area as a double integral - Change of variables between Cartesian and Polar coordinates – Triple integration in Cartesian coordinates – Volume as triple integral.

9 + 3

8 + 3

9 + 3

8+3

8 + 3

SUPPLEMENT TOPIC (for internal evaluation only)

Evocation /Application of Mathematics, Quick Mathematics – Speed Multiplication and Division Applications of Matrices.

TOTAL: 45 (L) + 15 (T) = 60

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

- Compute Characteristic Equation, Characteristic roots and use the applicability of Cayley Hamilton theorem to find the Inverse of matrix which is very important in Engineering and applications.(CO1) AP K3.
- Determine the limit of indiscriminate functions applicable to word problems and Engineering problems.(CO2) AP K3
- Analyze functions using limits, continuity and derivatives to solve problems involving these functions.(CO2) AP K3
- Apply Differentiation techniques to solve Maxima and Minima for given functions with several variables.(CO3) AP K3
- Use the Lagrange multiplier method to predict extreme values of functions with constraints and to find the absolute maximum and minimum of a function on different domains.(CO3) AP K3
- Learn the evaluation policy of some special function like Gamma, Beta function and their relation which is helpful to evaluate some definite integral arising in various branch of Engineering.(CO4) AP – K3
- Apply integration to compute Multiple integrals, Area and Volume in addition to change of order and change of variables.(CO5) AP K3
- Demonstrate basic concepts and to solve the complex Engineering problems using Matrix, Differentiation and Integration.(CO1, 2, 4) AP K3

TEXT BOOKS:

- 1. BALI N. P and MANISH GOYAL, "A Text book of Engineering Mathematics", Laxmi Publications (P) Ltd, New Delhi, 8th Edition, (2011).
- 2. VEERARAJAN.T "Engineering Mathematics" Tata McGraw Hill Publishing Company, New Delhi, 2008.
- 3. GREWAL. B.S, "Higher Engineering Mathematics", Khanna Publications, New Delhi, 42nd Edition, (2012).

REFERENCE BOOKS:

- 1. RAMANA B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 11th Reprint, (2010).
- 2. GLYN JAMES, "Advanced Engineering Mathematics", Pearson Education, New Delhi, 7th Edition, (2007).
- 3. JAIN R.K and IYENGAR S.R.K," Advanced Engineering Mathematics", Narosa Publishing House, New Delhi, 3rd Edition, (2007).
- 4. BHARATI KRISHNA TIRTHAJI, "Vedic Mathematics Mental Calculation", Motilal Banarsi Dass Publications, New Delhi, 1st Edition, (1965).
- 5. KREYSZIG. E, "Advanced Engineering Mathematics", John Wiley & Sons, New York, 10th Edition, (2011).
- 6. P.SIVARAMAKRISHNA DAS, E.RUKMANGADACHARI "Engineering mathematics", volume 1, Pearson Edison New Delhi, 2nd Edition, (2013).

19UPH103 - ENGINEERING PHYSICS

(Common to All Branches-Except CSBS)

OBJECTIVES:

- To develop the research interest in crystal physics
- To use the principles of Lasers and its types
- To apply principles of Quantum physics in engineering field
- To develop knowledge on properties of materials

UNIT I : CRYSTAL STRUCTURE

Introduction – Classification of solids –Space lattice –Basis-Lattice parameter – Unit cell – Crystal system –Miller indices –d-spacing in cubic lattice - Calculation of number of atoms per unit cell - Atomic radius-Coordination number - Packing factor for SC, BCC, FCC and HCP structures - crystal imperfection -Point defects-Line defects-Surface defects-Volume defects Burger vector.

UNIT II : PHOTONICS

Introduction- Principles of Laser- Characteristics of laser -Spontaneous and stimulated emission - Population inversion - Einstein's A and B coefficients - Pumping methods - Basic components of Laser - Types of lasers - Nd - YAG laser - CO₂ laser - Holography - Construction and Reconstruction of hologram - Industrial and Medical Applications.

UNIT III : QUANTUM MECHANICS

Introduction - Black body radiation - Planck's law of radiation - Wien's displacement law-Rayleigh Jeans law- Compton Effect – Theory and experimental verification – Matter waves-Schrodinger's wave equation - Time dependent - Time independent equation - Particle in 1-D dimensional box

UNIT IV : PROPERTIES OF SOLIDS

Introduction - Elasticity- Stress and Strain - Hooke's law - Three moduli of elasticity -stressstrain curve – Poisson's ratio – Factors affecting elasticity – Bending moment – Depression of a cantilever-Young's modulus by uniform bending-I-shaped girders.

TOTAL: 45 PERIODS

10

10

13

12

LTPC 3003

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

- CO1: Identify the seven types of crystal structures and illustrate unit cell characteristics and crystal defect [Understand]
- CO2: Compare the different types of lasers and analyse the role of lasers in medical and industrial applications [Understand]
- CO3: Apply the wave and particle nature of matter using Quantum mechanics [Apply]
- CO4: Describe the elastic behavior of various materials. [Understand]
- CO5: Apply fundamental knowledge to solve Engineering problems [Apply]
- CO6: Apply the theory for the analysis of mechanical and optical properties of solids [Apply]

TEXT BOOKS:

- 1. Dr. Mani.P, "Engineering Physics", Dhanam Publications, Edition ,2018, Chennai.
- 2. Rajendran.V, "Engineering, Physics", Tata Mc-Graw Hill Publishing Companylimited, New Delhi, Revised Edition 2018.
- 3. Palanisami P.K., "Physics For Engineers", Scitech Publications (India), Pvt Ltd., Chennai, 2018.

- 1. Raghuvenshi G.S., "Engineering Physics", PHI Learning Private Limited, New Delhi, Revised Edition 2018.
- 2. Arul doss .G., "Engineering Physics", PHI Learning Limited, New Delhi, Revised Edition 2018.
- 3. Marikani .A., "Engineering Physics", PHI Learning Private Limited, New Delhi, Revised Edition 2017.
- 4. Sankar B.N., and Pillai .S.O., "A Text book of Engineering Physics", New Age International Publishers Private Limited, New Delhi, Revised Edition 2017.
- 5. Avadhanulu M.N. and Kshirsagar P.G., "ATextbook: of Engineering Physics", S.Chand & Company Ltd., New Delhi, 2018.

19UCY104 - ENGINEERING CHEMISTRY

(Common to Mechanical & Chemical Engineering)

L T PC 3003

11 Hrs

11 Hrs

OBJECTIVES:

- To gain the knowledge on Chemical bonding and types.
- To acquire on basic chemical reactions.
- To make the students conversant with boiler feed water requirements related problems and water treatment techniques.
- To understand the principles and control methods of corrosion.

UNIT I: CHEMICAL BONDING

Chemical Bonding: Electronic Configuration– Ionic Bond - Covalent Bond – Metallic bond –Aufbau principle, Pauli Exclusion principle, Valence bond theory applications and its limitations, Various types of hybridization (sp, sp²,sp³) (C_2H_2 , C_2H_4 , CH_4) -bond strength and bond energy - Hydrogen bonding, Vander Waals forces.

UNIT II: BASIC CHEMICAL REACTION ANDCHEMICAL KINETICS 11 Hrs Study of basic types of reaction- Displacement and Redox Reactions – Basic properties of Acids, Bases and Salt.

Chemical Kinetics: Basic definitions, Differential equation view of rate - Rate constant, Rate law - Reaction order 1^{st} and 2^{nd} order kinetics - Determination of kinetics from rate laws, Half-life.

UNIT III: WATER AND ITSTREATMENT TECHNOLOGIES

Hardness of water – types – expression of hardness (Problems) – units – estimation of hardness of water by EDTA– boiler troubles (scale and sludge) – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) – External treatment-Ion exchange process-zeolite process – desalination of brackish water – Reverse Osmosis.

UNIT IV: CORROSION AND ITS PREVENTION TECHNIQUES 12 Hrs

Introduction- Definition- Types –Chemical corrosion (Dry corrosion, mechanism and its Example)-Electrochemical corrosion (Wet corrosion, mechanism and its Types – Galvanic & Differential aeration Corrosion- Pitting, crevice & Wire fence corrosion). Corrosion prevention - Cathodic protection and Protective coatings – Paint, Electro plating – Gold plating.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

- Describe the fundamental concepts of chemical bonds. (Understand)
- Explain the basic chemical reaction and chemical kinetics of first and second order reaction. (Understand)
- Apply the knowledge of water treatment techniques to remove the hardness of water. (Apply)

• Explain the concept of corrosion and the prevention techniques. (Understand)

TEXT BOOKS:

- 1. Jain P.C. and Monica Jain, "Engineering Chemistry", DhanpatRai Publishing Company (P)Ltd., New Delhi, 2010
- 2. Dr.Sunita Rattan, "A Textbook of Engineering Chemistry" S.K.Kataria& Sons., New Delhi, 2013.
- 3. Pradeep. T "A textbook of Nanoscience and Nanotechnology", Tata McGraw Hill education private ltd, 2012.

- 1. Physical chemistry Samuel Glasstone, Macmillan II edition, 1969.
- 2. Physical Chemistry P.L. Sony, Sulthan Chand & Sons, Delhi 6.
- 3. A. K. Kaw, Mechanics of Composite Materials, CRC Press, New Delhi 2005.
- 4. S. C. Sharma, Composite materials, Narosa Publications, New Delhi, 2000.

19UCS108 - PROBLEM SOLVING AND PYTHON PROGRAMMING

(Common to ALL Branches-Except CSBS)

OBJECTIVES:

- To impart the concepts in problem solving for computing
- To familiarize the logical constructs of programming
- To illustrate programming in Python.

UNIT I: INTRODUCTION

Definition and basic organization of computers - classification of computers - Software -Types of software – types of programming paradigms - Translators: compiler and interpreter – Problem solving tools: Algorithms - Flowchart - Pseudo code.

UNIT II: INTRODUCTION TO PYTHON

Introduction to python – features of python – modes of working with python. Values and data types: numbers, Boolean, strings; variables, expressions, statements, tuple assignment, precedence of operators, comments - print function- conversion of algorithm in to program -Solving simple problems involving arithmetic computations and sequential logic to solve.

UNIT III: CONTROL CONSTRUCTS

Flow of execution - control structures: conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass - Solving problems involving decision making and iterations

UNIT IV: FUNCTIONS AND PACKAGES

Functions - function definition and use, flow of execution, parameters and arguments; parameters, local and global scope, function composition-Anonymous or Lambda Function, recursion -packages.

UNIT V: LISTS, TUPLES, DICTIONARIES AND STRINGS

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, listparameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension - Strings: string slices; immutability, string functions and methods, string module

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

- Utilize problem solving tools in solving computing problems [Apply]
- • Solve mathematical expressions involving sequential logic in python [Apply]
- Solve problems using python using decision structure and looping constructs [Apply]
- Write modular programs using functions and packages [Apply]
 - Manipulate data using List, Tuples, Dictionaries and strings [Apply]

9

L T PC 3003

9

9

9

9

TEXT BOOKS:

- 1. Ashok NamdevKamthane& Amit Ashok Kamthane, "Problem solving and python programming", McGraw Hill Education, 2018 (copyright)
- 2. Anurag Gupta & G P Biswas, "Python Programming Problem solving, packages and libraries", McGraw Hill Education, 2020 (copyright).

- 1. John V Guttag, "Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013
- 2. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 3. Timothy A. Budd, "Exploring Python||, Mc-Graw Hill Education (India) Private Ltd., 2015.
- 4. Kenneth A. Lambert, "Fundamentals of Python: First Programs||, CENGAGE Learning, 2012.
- 5.Charles Dierbach, "Introduction to Computer Science using Python: A Computational ProblemSolving Focus, Wiley India Edition, 2013.
- 6. Paul Gries, Jennifer Campbell and Jason Montojo, "Practical Programming: An Introduction to Computer Science using Python 3||, Second edition, Pragmatic Programmers, LLC, 2013.

19UME109 - ENGINEERING GRAPHICS

(Common to ALL Branches Except CSBS)

OBJECTIVES:

- To develop student's graphic skill for communication of concepts, ideas and design of engineering products and expose them to existing national standards related to technical drawings.
- To impart knowledge in development of surfaces and isometric projections.

CONCEPTS AND CONVENTIONS (NOT FOR EXAMINATION)

Importance of Graphics in Engineering Applications - Use of Drafting Instruments - BIS Conventions and Specifications - Size, Layout and Folding of Drawing Sheets - Lettering and Dimensioning-Introduction to Plane Curves, Projection of Points, Lines and Plane Surfaces

UNIT I: PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder and cone with axis is parallel, perpendicular and inclined to one of the plane.

UNIT II: SECTION OF SOLIDS

Section of solids - simple position with cutting plane parallel, perpendicular and inclined to one of theplane.

UNIT III: DEVELOPMENT OF SURFACES

Development of lateral surfaces of simple and truncated solids - Prisms, pyramids, cylinders and cones - Development of lateral surfaces of sectioned solids.

UNIT IV: ISOMETRIC PROJECTIONS

Principles of isometric projection - isometric scale - isometric view - isometric projectionsof simple solids and cut solids.

UNIT V: ORTHOGRAPHIC PROJECTION

Representation of Three Dimensional objects – General principles of orthographic projection-Need for importance of multiple views and their placement – First angle projection – layout views -Developing visualization skills of multiple views (Front, top and side views) from pictorial views of objects

TOTAL 45 (L) + 15 (T) = 60 PERIODS

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

- Apply the knowledge of First angle projection to draw the projection of different solids.(Apply)
- Draw the section of solids with true shape of the section. (Apply)
- Draw the development of lateral surface of regular and sectioned solids.(Apply)

L T PC

12

12

4

12

10

10

3104

- Draw the isometric of simple solids and sectioned solids.(Apply)
- Sketch the orthographic views from the given pictorial (isometric) view.(Apply)

TEXT BOOKS:

- 1. Natarajan K.V., "A Text book of Engineering Graphics", Dhanalakshmi Publishers, (2006).
- 2. Bhatt N.D., "Engineering Drawing", Charotar Publishing House, (2012).

- 1. Venugopal K., and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, (2008).
- 2. Gopalakrishnan K.R., "Engineering Drawing" (Vol.I&II), 23rd Edition, Subhas Publications.(2012).
- 3. DhananjayA.Jolhe,"Engineering Drawingwith an introduction to Auto CAD", Tata McGraw Hill Publishing Company Limited,(2012).
- 4. Saravanan M, Bensan Raj J, Ganesh Kumar S, "Engineering Graphics", JBR Trisea Publishers, Nagercoil, 2020

19UGM131 - INDUCTION PROGRAMME

(Common to ALL Branches)	LTPC
	0300
OBJECTIVES:	
• To rejuvenate the Body and Mind	
• To strengthen Attitude and soft skills	
• To practice Moral values of life.	
UNIT-I : PHYSICAL ACTIVITY	10Hrs
Zumba-Bokwa Fitness – Yoga – Mediation – Fine Arts	
UNIT-II : CREATIVE ARTS	
Painting – Class Painting – Wall Painting – Art from waste	5Hrs
UNIT-III : UNIVERSAL HUMAN VALUES & EMINENT SPEAKER Ethical values – Ambition and Family Expectation, Gratitude, Competitio Belief – Morality of life – Guest Lecture by Eminent personality	RS 5Hrs on and Excellence–
Unit-IV : LITERARY Elocution - Essay writing Competition - Impromptu Session - Dance and	singing competition
Unit-V : PROFICIENCY MODULES Toastmaster club meet	15Hrs
Unit-VI : INDUSTRIAL & LOCAL VISIT Vaigai Dam – Theni - VOC- Port-Tuticorin - Madurai Radio City-Madurai-NSS Activities.	8Hrs durai - Aavin Milk
Unit-VII : FAMILIARIZATION OF THE DEPARTMENT AND INN Department Introduction and Purpose of Course - Eminent speakers – Scop Course - Latest Innovation	OVATION 2Hrs be and Feature of the
(3	Total = 45 periods Weeks Model curriculum As per AICTE
COURSE OUTCOMES:	As per AICIE)
After the successful completion of this course, the student will be able to	
 Practice physical activities regularly. 	

- Implement creativity in drawing and waste material.
- Communicate their ideas effectively.
- Identify inputs and outputs of different industry process.
- Describe the scope and features of their programme of study.

Reference Book:

• Student Induction Programme: A Detailed Guide by AICTE, New Delhi.

19UCS110 - PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY

(Common to ALL Branches except CSBS) LTPC

0031.5

OBJECTIVES:

- To familiarize with programming environment
- To familiarize the implementation of programs in Python

LIST OF EXPERIMENTS

Problems involve Sequential logic and Decision Making

1. Write a Python program to process the mark processing system (Record has the following Fields: Name, Reg_no, Mark1, Mark2, Mark3, Mark4, Total, average). Print the student details and find the total and average mark.

2. Write a Python program to compute the +2 Cutoff mark, given the Mathematics, physics and Chemistry marks. Acollege has decided to admit the students with a cut off marks of 180. Decide whether the student is eligible to get an admission in that college or not.

3. Apizza in a circular shape with 8 inches and which is placed in a square box whose side length is 10 inches. Find how much of the box is "empty"?

4. A person owns an air conditioned sleeper bus with 35 seating capacity that routes between Chennai to Bangalore. He wishes to calculate whether the bus is running in profit or loss state based on the following scenario:

- Amount he spent for a day for diesel filling is: Rs. 15,000
- Amount he spent for a day for Driver and cleaner beta is: Rs. 3,000
- Ticket amount for a Single person is Rs: 950
- If all the seats are filled, what would be the result?
- If only 15 seats are filled, what would be the result?

5. Consider the person 'X' has some amount in his hand and the person 'Y' has some amount in his hand. If they wish to exchange the amount among them, how they can exchange the amount by using the third party 'Z'.

Problems involve iterations

6.Aman is blessed with a duck that can lay golden eggs. First day it lays one egg, in second day it lays two eggs, in third day it lays three eggs, and it continues to lay eggs in an incremental manner dayby day. Now calculate how many golden eggs that duck lays till 'n'th day.

7.Four People A,B,C,D are sitting in a Circular arrangement. In how many ways their seating can be arranged.

8. The Greek theater shown at the right has 30 seats in the first row of the center section. Each row behind the first row gains two additional seats. How many seats are in the 5th row in the center section?

Problem involve functions and recursive functions

9. Write a program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is a right triangle. (Recall from the Pythagoras theorem that in a right triangle, the square of one side equals the sum of the squares of other two sides)

10. Agame has to be made from marbles of five colors, yellow, blue, green, red and Violet where five marbles has to be kept one upon another. Write a python program using recursion, to find how many ways these marbles can be arranged.

11. Tower of Hanoi is a mathematical puzzle where we have three rods and n disks. The objective of the puzzle is to move the entire stack to another rod, obeying the following simple rules: Here is a high-level outline of how to move a tower from the starting pole, to the goal pole, using an intermediatepole:

- 1. Move a tower of height-1 to an intermediate pole, using the final pole.
- 2. Move the remaining disk to the final pole.
- 3. Move the tower of height-1 from the intermediate pole to the final pole using original pole

Problems involve fitness and Nested List

12. In a class of 50 numbers of students, 6 students are selected for state cricket academy. Sports faculty of this school has to report to the state cricket academy about the selected students' physical fitness. Here is one of the physical measures of the selected students'; Height in cm is given for those 6 selected students [153,162,148,167,175,151]. By implementing functions, do the following operations.

- (i) State academyselector has to check whether the given height is present in the selected students list or not.
- (ii) State academy selector has to order the height of students in an incremental manner.
- (iii) State academyselector has to identify the maximum height from the list.

Problems involve Dictionary and Tuples

Dictionary

13. A university wishes to create and maintain the details of the students such as Rollno, Regno, Name, Dept, Batch, Contact_no, Nativity(Indian/NRI) as key value pairs. Do the following operations:

- (i) Display the complete student details on giving Rollno as input.
- (ii) Display the complete student details whose nativity belongs to NRI.
- (iii) Display the complete student details whose department is CSE.

Tuples

14. A librarian wishes to maintain books details such as ISBN, Book Name, Author Name, Year published, Publisher Name. He wishes to retrieve the book details in the following scenario:

- (i) Retrieve the complete details of the book on giving ISBN.
- (ii) Retrieve the details of the book which published after the year 2015.
- (iii) Retrieve the details of the book whose author name is 'Andrew'.
- (iv) Retrieve the details of the book that name of the book is 'Python'

Problems involve Strings

15. A musical album company has 'n' number of musical albums. The PRO of this company wishes to do following operations based on some scenarios:

- (i) Name of the album starts with's'or 'S'.
- (ii) Name of the album which contains 'jay' as substring.
- (iii) Check whether the album name presents in the repository or not.
- (iv) Count number of vowels and consonants in the given album name.

TOTAL: 45 Periods

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

- Formulate algorithms for simple problems and translate the algorithms to a working program [Apply]
- Formulate algorithms and programs for arithmetic computations and sequential logic [Apply]
- · Write iterative programs using control constructs[Apply]
- Develop programs using functions, packages and use recursion to reduce redundancy[Apply]
- Represent data using lists, tuples, dictionaries and manipulate them through a program [Apply]

HARDWARE/ SOFTWAREREQUIRED FORABATCHOF30 STUDENTS

HARDWARE

LAN SYSTEM WITH 30 NODES (OR) STANDALONE PCS - 30 NOS

SOFTWARE OS – UNIX CLONE (License free Linux) EDITOR – IDLE

19UME111 - ENGINEERING PRACTICES LABORATORY

(Common to Mech, EEE, Civil, Chemical and Agriculture)

L T P C 0 0 3 1.5

OBJECTIVES:

- To demonstrate the plumbing and carpentry works.
- To train the students to perform welding, fitting and drilling operations.
- To demonstrate residential house wiring, fluorescent lamp wiring, measurement of earth resistance, colour coding of resistors, logic gates and soldering.

GROUP - A (CIVIL & MECHANICAL)

CIVIL ENGINEERING PRACTICE

LIST OFEXPERIMENTS:

- 1) Studyof pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, and elbows in household fittings.
- 2) Preparation of plumbing line sketches for water supply and sewage works.
- 3) Hands-on-exercise: Basic pipe connections–Mixed pipe material connection Pipe connections with different joining components.
- 4) Demonstration of plumbing requirements of high-rise buildings.
- 5) Studyof the joints in roofs, doors, windows and furniture.
- 6) Hands-on-exercise: Wood work, cutting, planning and joints bysawing –Half lap joint

MECHANICAL ENGINEERING PRACTICE

LIST OF EXPERIMENTS:

- 1) Preparation of arc welding of butt joints, lap joints and tee joints.
- 2) Drilling Practice.
- 3) Sheet metal model making-Trays, funnels, etc.
- 4) Different type of fittings-'V' type, 'L' Type
- 5) Studyof Lathe Machine tool.
- 6) Studyof Plastic Injection Moulding.

7) Study of Moulding.

Aminimum of five experiments shall be offered in GROUP-A(CIVIL& MECHANICAL)

GROUP - B (ELECTRICAL & ELECTRONICS)

ELECTRICAL ENGINEERING PRACTICE

LIST OFEXPERIMENTS:

- (a) Residential house wiring using switches, fuse, indicator, lamp and energy meter and Stair case wiring.
- (b) Fluorescent lampwiring.
- (c) Measurement of resistance to earth of electrical equipment.

ELECTRONICS ENGINEERING PRACTICE

LIST OF EXPERIMENTS:

- (a) Studyof Electronic components and equipments Resistor, colour coding measurement of AC Signal parameter (peak-peak, rms, period, frequency) using CRO.
- (b) Studyof logic gates AND, OR, EX-OR and NOT Gate.
- (c) Soldering practice Components, Devices and Circuits Using general purpose PCB.

Total: 45 Periods

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

- Apply the basic knowledge of plumbing to make simple house hold pipe line connections. (Apply)
- Fabricate the given components using carpentry, sheet metal, fitting & welding equipment/tools. (Understand)
- Perform the drilling operations. (Apply)
- Apply basic electrical engineering knowledge for house wiring practice. (Apply)
- Apply the knowledge of basic electrical engineering to practice soldering using general purpose PCB.(Apply)

EQUIPMENT REQUIREMENT

CIVIL ENGINEERING

Sl No.	Name of the Equipment	Quantity Required
1.	Assorted components for plumbing consisting of metallic Pipes, plastic pipes, flexible pipes, couplings, unions, Elbows, plugs and other fittings	5 Sets
2.	Carpentry vice (fitted to workbench)	15 Nos
3.	Standard working tools	15 Sets
4.	Models of industrial trusses, door joints, furniture joints	5 each
5.	Power tool rotary hammer	2 Nos
6.	Demolition hammers	2 Nos
7.	Planer	2 Nos
8.	Hand drilling machine	2 Nos
9.	Jigsaw	2 Nos

MECHANICAL ENGINEERING

SI No.	Name of the Equipment	Quantity Required
1.	Arc welding transformer with cables and holders	5 Nos
2.	Welding booth with exhaust facility	5 Nos
3.	Welding accessories like welding shield, chipping hammer, wire brush, etc.	5 Sets
4.	Oxygen and acetylene gas cylinders, blow pipe and other welding Outfit	2 Nos
5.	Vice	5 Nos
6.	Hacksaw frame and blade	5 Nos
7.	Files	5 Nos
8.	Study-purpose items: Centre Lathe, pattern, cope & drag box and moulding tools	Each 1 No

ELECTRICAL ENGINEERING

SI No.	Name of the Equipment	Quantity Required
1.	Assorted electrical components for house wiring	15 Sets
2.	Electrical measuring instruments	10 Sets
3.	Megger (250V/500V)	1 No
4.	Study purpose items: Iron box, fanand regulator, emergency lamp	One Each
5.	Power Tools: (a) Range Finder (b) Digital Live-wire detector	2 Nos 2 Nos

ELECTRONICS ENGINEERING

SI No.	Name of the Equipment	Quantity Required
1.	Logic trainer kit	2 Nos
2.	CRO, AFO	2 Each
3.	Small multipurpose PCBs	10 No
4.	Soldering guns	10 No
5.	Multimeters	5 No
6.	Assorted electronic components for making circuits	Required Quantity

19UGS112 - BASIC SCIENCES LABORATORY

(Common to All Branches-Except CSBS)

PHYSICS LABORATORY

L T P C 0 021

OBJECTIVES:

- To create scientific Temper among the students.
- To know how to execute experiments properly, presentation of observations and arrival of conclusions.
- To view and realize the theoretical knowledge acquired by the students through experiments

LIST OF EXPERIMENTS (Common to All Branches)

- 1. Laser Determination of particle size and wavelength of Laser source. using DiodeLaser.
- 2. Ultrasonic Interferometer Determination of velocity of sound and compressibility of liquid.
- 3. Poiseuille's method Determination of Coefficient of viscosity of liquid.
- 4. Spectrometer Determination of dispersive power of a prism.
- 5. Air Wedge method Determination of thickness of a thin wire.
- 6. Uniform bending method Determination of Young's modulus of the given rectangular beam.

Aminimum of FIVE experiments shall be offered

TOTAL: 30 Periods

COURSE OUTCOMES:

After the successful completion of this course, the student shall be able to

- Apply the principles of Optics, Laser physics and Mechanics to determine the Engineering properties of materials (AP)
- Analyze the given liquid sample to determine the viscosity and compressibility of the liquid (AN)
- Apply the principles of spectroscopy to determine the properties using prism (AP)

CHEMISTRY LABORATORY

OBJECTIVES:

- To impart knowledge on basic concepts in applications of chemical analysis
- Train the students to handle various instruments.
- To acquire knowledge on the chemical analysis of various metal ions.

LIST OF EXPERIMENTS

(Common to All Branches-Except CSBS)

- 1. Preparation of molar and normal solutions of the following substances Oxalic acid, Sodium Carbonate, Sodium Hydroxide and Hydrochloric acid
- 2. Conductometric Titration of strong acid with strong base
- 3. Conductometric Titration of Mixture of Acids
- 4. Estimation of Iron by potentiometry
- 5. Determination of Strength of given acid using pH metry
- 6. Determination of molecular weight of polymer by viscometry
- 7. Comparison of the electrical conductivity of two samples-conductometric method
- 8. Estimation of copper in brass by EDTAmethod

• Aminimum of FIVE experiments shall be offered for every course

TOTAL: 30 Periods

COURSE OUTCOMES:

At the end of the course, the student will able to

- Prepare solutions on various concentrations. (Apply)
- Analyze the given solution quantitatively using chemical and electro analytical methods.(Analyze)
 - Determine the amount molecular weight of the given substances.(Apply)

<u>19UEN201 – Communication Skills for Professionals</u>

L T P C 1 1 0 1.5

OBJECTIVES:

- Improve their oral expression and thought
- Develop their confidence and ability to speak in public
- Develop their capacity for leadership

5 Oral Projects

Project 1: SELF INTRODUCTION & DELIVER A SPEECH BEFORE AUDIENCE (Time: 5 to 7 minutes)

To Speak in front of an audience with courage.

- Make your message clear, with supporting material.
- Create a strong opening and conclusion.

Project 2: SPEAK ON THE CHOSEN CONTENT (Time: 5 to 7 minutes)

- Select a general topic and bring out specific purposes.
- Avoid using notes.
- Use symbolic ideas to develop your ideas.

Project 3: USE EFFECTIVE BODY LANGUAGE & INTONATION (Time: 5 to 7 minutes)

- Use appropriate posture, gestures, facial expressions and eye contact to express your ideas.
- Use proper intonation and adequate speech module.

Project 4: PRESENT YOUR TOPIC WITH VISUAL AIDS (Time: 5 to 7 minutes)

- Persuade your points with suitable illustration, specific facts, examples
- Use suitable visual aids to present your topic with confidence.

Project 5: GRASP THE ATTENTION OF THE AUDIENCE (Time: 5 to 7 minutes)

- Influence your listeners by adopting holistic viewpoint.
- Use emotions, stories, and positive quotes in your speech.

Total Hours = 30 periods

COURSE OUTCOME

After successful completion of this course the students will be able to:

<i>CO-1</i>	Apply Language skills to write and speak effectively	С-Кб
<i>CO-2</i>	Select the right words and sentence to communicate ideas clearly and accurately	<i>C-K6</i>
<i>CO-3</i>	Exhibit good postures and proper attire to present the ideas effectively	C-K6
<i>CO-4</i>	Present the ideas effectively using visual aids.	С-Кб
<i>CO-5</i>	Communicate with clarity and present the ideas effectively to the audience	C-K6

Reference Book:

1. Competent Communication- A Practical Guide to becoming a better speaker, Toastmasters International, USA.

2. Norman Lewis – Word Power Made Easy, Pocket Book Publication, 2019.

S.No	Criteria	Marks
1	Submission of 5 Project scripts	5x2= 10 marks
2	Prepared speech based on the Projects	5x5= 25 marks
3	Performance in other Roles1.TMOD2.Speech Evaluator3.Table Topic Speaker and Master4.General Evaluator5.JIG and TAG Team member	5x3= 15 marks
	Total	50 marks

Internal and External Assessment plan

External Assessment plan

S.No	Criteria	Marks							
Prepared speech based on the Toastmasters Projects (5-7 minutes)									
1	Confident, Eye Contact, Body Language	5 marks							
3	Content and clarity	20 marks							
4	Command over Language	15 marks							
5	Error free language	10 marks							
	Total	50 marks							

Internal =50 marks

External =50 marks

Total

=100 marks

Minimum Pass Mark =50 marks

19UMA207

CALCULUS, COMPLEX ANALYSIS AND TRANFORM

TECHNIQUES

(COMMON TO CHEMICAL, AGRI, BIO MED AND BIO TECH)

L T P C 3 1 0 4

OBJECTIVES :

- To develop an understanding of the basics of vector calculus comprising of gradient, divergence and curl, and line, surface and volume integrals and the classical theorems involving them.
- To acquaint the student with the concepts of analytic functions and their interesting properties which could be exploited in a few engineering areas, and be introduced to the host of conformal mappings with a few standard examples that have direct application.
- To make the student to acquire sound knowledge of Laplace transform techniques and its applications in getting the solution of certain linear differential equations

UNIT I SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Applications of ODE (Bacterial growth, Population growth, Decayed problems).

UNIT II VECTOR CALCULUS

Gradient Divergence and Curl – Directional derivative – Irrotational and Solenoidal vector fields –Vector integration – Green's theorem in a plane, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopiped.

UNIT III COMPLEX VARIABLES

Functions of a complex variable – Analytic function – Necessary and Sufficient Conditions (excluding Proofs) – Harmonic function - Properties of an analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping- simple Transformations: w = z+c, cz, 1/z, and Bilinear transformation.

UNIT IV COMPLEX INTEGRATION

Statement and applications of Cauchy's integral theorem, Cauchy's integral formula and Cauchy Residue Theorem – Taylor's and Laurent's expansions – Applications of residue theorem to evaluate real integrals – Unit circle and semi-circular contour (excluding Poles on the real axis).

UNIT V LAPLACE TRANSFORM

Existence conditions – Transform of elementary functions – Basic properties – Transform of derivatives and integrals – Transform of unit step function, impulse function and periodic function - Inverse Laplace transform – Convolution theorem (excluding Proof) –Solution of linear ODE of second order with constant coefficients.

SUPPLEMENT TOPIC (for internal evaluation only)

Evocation / Application of Mathematics.

TOTAL : 45 (L) + 15 (T) = 60 Periods

3

8 + 3 neters

8 + 3

8 + 3

9 + 3

9 + 3

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

- Apply the knowledge of higher order ordinary differential equations in real life engineering problems.(CO1) AP K3
- Apply the concept of vector identities in problem solving and evaluate the line, surface and volume integrals.(CO2) AP K3
- Apply the knowledge of standard techniques of complex variables and mapping for evaluating analytically.(CO3) AP K3
- Apply the knowledge of singularities, residues and applying in complex integration.(CO4) AP K3
- Apply the knowledge concept of Laplace transform and solve the problems with periodic function, convolution and Ordinary Differential Equation.(CO5) AP K3
- Understands the concept of particular integral, scalar potential, poles and periodic function. (CO6) U K1

TEXT BOOKS:

1. VEERARAJAN.T "Engineering Mathematics" Tata McGraw Hill Publishing Company, New Delhi, 2008.

2. BALI N. P and MANISH GOYAL, "Text book of Engineering Mathematics", Laxmi Publications (P) Ltd., New Delhi, 3rd Edition, (2008).

3. GREWAL. B.S, "Higher Engineering Mathematics", Khanna Publications, New Delhi, 43rd Edition, (2014).

- 1. RAMANA B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 11th Reprint, (2010).
- 2. BROWN J.W. and CHURCHIL R.V." Complex Variable and Applications" 7th Edition McGraw Hill Publishing Company 2004.
- 3. JAIN R.K and IYENGAR S.R.K, "Advanced Engineering Mathematics", Narosa Publishing House Pvt. Ltd., New Delhi, 3rd Edition, (2007).
- 4. INCE E.L "Ordinary Differential Equations", Dover Publications, 1958.

СО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO.1	3			1								1	2	
CO.2	3			1								1	2	
CO.3	3			1								1	2	
CO.4	3			1								1	2	
CO.5	3			1								1	2	
CO.6	3			1								1	2	

MATERIALPHYSICS

(Common to Chemical & Mechanical Branches)

OBJECTIVES :

- To improve Cold work properties by increasing ductility and retaining most of the hardness.
- To cover the fundamental scientific principles for the different synthesis techniques and assembly of the advanced materials.
- To achieve an understanding of principles of thermodynamics and to be able to • use it for physical systems like boiler, pressure vessels etc.,

UNIT I STRENGTHENING MECHANISM

Introduction - Strengthening mechanisms in metals-Work hardening-Solid solution strengthening -Precipitation hardening-Grain boundary strengthening- Transformation hardening-Strengthening materials-Polymer-Glass-Composite amorphous mechanisms strengthening-Fiber in Tensile strength-Anisotropy -Laminar reinforcement-Mechanical Testing reinforcementmethods-Applications 10

UNIT II THERMAL PHYSICS

Introduction-Law of Thermodynamics-Entropy-Thermal conduction, convection and Radiation-Newton's law of cooling- Searle's apparatus and Lee's disc apparatus for determination of thermal conductivity-Thermal Expansion- Applications: Heat exchangers-Refrigerators-solar collector.

UNIT III **NEW ENGINEERING MATERIALS 12**

Introduction-Metallic glasses- preparation - properties & applications -Shape memory alloyspreparation – properties & applications - Ceramic Materials: Introduction - Classification – Methods of Processing - Slip casting - Isostatic pressing - Gas pressure bonding -Properties -Application. 10

UNIT IV NANO MATERIALS

Introduction to Nano materials –Various forms-Nano Dots-Nano rods-Nano fluids-Nano colloidal-Fullerene-Fabrication methods – Top-down and bottom up approach – Chemical Vapour deposition - ball milling - Carbon nanotubes-structure-properties – Applications.

TOTAL:45PERIODS

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

CO1: Analyze the suitable strengthening mechanism to improve the properties of materials relevant to industrial application [Analyze]

CO2: Describe the laws of thermodynamics from both a macroscopic and microscopic point of view [Understand]

CO3: Apply the strategies of new engineering materials and their manufacturing methods encountered in mechanical engineering.[Apply]

CO4: Analyze the various form of nanomaterials for engineering and industrial applications (Analyze)

CO5: Apply the s

trengthening mechanism and testing methods involved in metals, non-metals and polymers. (Apply)

CO6: Analyze the principles of material physics to develop new projects in the field of nanotechnology and strengthening mechanism of new engineering materials. (Analyze)

13

TEXT BOOKS:

- 1. V. Raghavan, Material Science and Engineering : A First Course, 5th Ed, Prentice-Hall of India, 2018.
- 2. W.D. Callister (Jr.), Materials Science and Engineering : An Introduction, 6th Ed., 2018.

- 1. Dr. Mani.P , "Material science ", Dhanam Publications, Chennai Revised Edition, 2018
- 2. Pillai S.O, "Solid State Physics", New Age Inc, Revised Edition 2018.
- 3. Kingery W.D., Bowen H.K. and Dr. Uhlmann, "Introduction to Ceramics', Forth Edition, Wiley and sons, Revised Edition 2016.
- 4. Raghavan.V, "Material Science and Engineering", Prentice Hall of India Private Limited, New Delhi, Revised Edition 2018.
- 5. Vijayakumari, "Engineering Physics", Vikas Publishing, New Delhi, Revised Edition 2016.

CO/PO/PSO MAPPING												
	Mechanical Engineering											
Ref: 3- Strong 2- Medium 1- Weak												
PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	
2										2		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										2	2	
CO2	2	2										2	2	
CO3	2	2										2		
CO4	3											2		
CO.5	2	2										2		
CO.6	3	2										2		

19UCY204

(COMMON TOALL BRANCHES) 3 0 0 3

OBJECTIVES

- To understand the concepts of Environment and ecosystem.
- To acquire knowledge about the impact of environmental pollution.
- To understand the importance of environmental issues in the society.
- To gain knowledge about the impact of environment related to human health.
- To gain knowledge in alternative energies.

UNIT I: ENVIRONMENTAND ECOSYSTEMS

Definition, scope and importance of environment – Need for public awareness – Concept of ecosystem–Structure and function of ecosystem–Producers, consumers and decomposers-Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Aquatic ecosystems (c) Grassland ecosystem.

UNIT II: ENVIRONMENTALPOLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution

- pollution case studies - Role of an individual in prevention of pollution –Disaster management: floods, earthquake, cyclone and landslides.

UNIT III: SOCIAL ISSUES AND THE ENVIRONMENT

Water conservation, rain water harvesting, watershed management – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, case studies. Environmental laws/Acts, (EPA).

UNIT IV: HUMAN POPULATION AND THEENVIRONMENT

Population growth, variation among nations – Population explosion – Human rights – Family welfare programme – Environment and Human Health – Human Rights - Value education – HIV / AIDS – Women and child welfare – Role of information technology in environment and human health.

UNIT V: FUTURE POLICYAND ALTERNATIVES

Introduction to future policy and alternatives-fossil fuels-nuclear energy-solar energy-wind energy - hydroelectric energy-geothermal energy - tidal energy - sustainability - green power-nanotechnology.

9

9

9

9

9

Total: 45 Periods

OUTCOMES

After successful completion of this course the students will be able to:

- Understand the basic concept of structure and function of ecosystem (Understand)
- Apply the knowledge of various pollution types to prevent the ecosystem and Environment (Apply)
- Analyze the environmental problem to report the social issues and the environment. (Analyze)
- Compare the suitable methods for conservation and sustainable development of natural resources (Analyze)
- Apply the principles of value education with respect to human population to preserve environment (Apply)
- Analyze the current energy crisis and suggest a suitable sustainable alternatives that promotes social health and environmental prospects. (Analyze)

TEXT BOOKS

- 1. Anubha Kaushik, kaushik C.P., "Environmental Science and Engineering", Third Edition, New Age International, New Delhi, 2009.
- 2. Benny Joseph "Environmental Science and Engineering", Tata Mc-Graw Hill, New Delhi, 2006.

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering andScience', Pearson Education,Upper saddle River, New Jersey, 2008.
- 2. Miller T.G. Jr., Environmental Science", Wadsworth PublishingCompany, Belmont, California, 2005.
- 3. De A.K., "Environmental Chemistry", Wiley Eastern Ltd., New Delhi,2001.
- 4. Trivedi R.K., Goel P.K., "Introduction to Air Pollution", Techno-Science Publication, Jaipur,2005.

1011011205	INTRODUCTION TO CHEMICAL ENCINEEDING	L	Т	Р	С
19001205	INTRODUCTION TO CHEMICAL ENGINEERING	3	0	P 0	3
Objective:	· · · · · · · · · · · · · · · · · · ·				

• The student should be able to learn historical overview of chemical engineering and the basics of Unit Operations & Process, Materials and Energy Balance, Fluid Mechanics, Heat Transfer, Mass Transfer, Chemical Kinetics, Measuring devices and Computer application in chemical engineering

Module		Topics	L
I	A	Introduction: Chemistry, Chemical Engineering and Chemical Technology. Historical overview of chemical engineering; Chemical Engineering in Everyday life; Personalities of Chemical Engineering; Greatest achievements in Chemical Engineering; Representation of a Chemical Process in terms of Flow sheet - Unit Operation and Unit Process; Scale of chemical Processes	9
п	A	Basic Calculations and Fluid Flow: Units and Dimensions, Basic Chemical Calculations, Material and Energy Balance, Flow of fluids: Introduction, nature of fluid, viscosity, velocity profile, flow field, types of fluid motion, laminar and turbulent flow, Pumps.	9
ш	A	Heat and Mass Transfer: Heat transfer: Conduction, convection and radiation. Flow arrangement in heat exchangers and Heat Transfer Equipments. Mass transfer: Diffusion, mass transfer operation, absorption, Distillation, Liquid-Liquid Extraction, Humidification and dehumidification, Drying, Crystallization, Adsorption	9
IV	A	Chemical Kinetics & Measuring devices: Introduction, Thermodynamics reviews, Rate of equation, Catalysis, reactors. Measuring devices – Density, Viscosity, Humidity, pH, Chemical Composition, Temperature, Pressure, Flow meters and Liquid level.	9
V	A	Computers and Application: The use of Mathematics and Computer in Chemical Engineering; Chemical Engineering Software, Role of Chemical Engineers in the area of Food, Medical, Energy, Environmental, Biochemical, Electronics etc. Paradigm shifts in Chemical Engineering; Opportunities for Chemical Engineers; Future of Chemical Engineering.	9
		Total Hours	45
	Bloom's Level		
CO1	Abili transf applie	Understand	
CO2	Ability to apply the knowledge to solve the problem in basic concept of chemical engineering.		Apply
CO3	Ability to analyse various fundamentals of chemical engineering problems		Analyze
CO4	Abili	Evaluate	

CO5	Ability to formulate and develop models using chemical enginering	Design		
CO6	Ability to conduct experiments using modern tools	Modern tool usage		
Text Books				
1.	Ghosal, S.K, Sanyal S.K. and Dutta.S, "Introduction to Chemical Engineering" TMI	H Publications, New		
	Delhi, 1998			
2.	Badger W.L. and Banchero J.T., "Introduction to Chemical Engineering", 6th Edition, Tata McGraw Hill, 1997.			
3.	Dryden, C.E., "Outlines of Chemicals Technology", Edited and Revised by Gopala Rao, M. and M.Sittig,			
	2nd Edition, Affiliated East-West press, 1993.			
4.	Randolph Norris Shreve, George T. Austin, "Shreve'e Chemical Process Industries", 5th Edition, McGraw			
	Hill, 1984			
Reference Books				
1.	McCabe, W.L., Smith, J. C. and Harriot, P. "Unit operations in Chemical Engineering", McGraw Hill, 7th			
	Edition, 2001			
2.	Finlayson, B. A., Introduction to Chemical Engineering Computing, John Wiley & Sons, New Jersey, 2006			
3.	Pushpavanam, S, "Introduction to Chemical Engineering", PHI Learning Private Ltd, Ne	ew Delhi, 2012		
4.	4. Bhatt B. I. and Vora, S. M, "Stoichiometry", 4th edition, McGraw Hill, 2004			

Complied by	Dr. C. Marimuthu/ Mr. M. Dharmaprabhu
Recommended by BoS on	
Approved by Academic Council on	

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING 19UEE226 (COMMON TO MECH, CIVIL, CHEMICAL & AGRI)

3 0 3 0

С

Т Р

L

OBJECTIVES :

• This course facilitates the students to get a comprehensive exposure to electrical and electronics engineering.

DC AND AC CIRCUITS UNIT I

Direct currents and voltages, power, Kirchhoffs Laws, Alternating current and voltage, Peak, RMS and average values, circuit elements R,L &C, Phasor Diagram, impedance, real and reactive power in single phase circuits.

UNIT II **DC MACHINES AND TRANSFORMERS**

DC machines Construction, principle of operation and applications, Single phase transformer construction, principle of operation, Applications.

UNIT III **AC MACHINES**

Synchronous and Induction machines -Construction, Principle of operation, and applications.

SPECIAL MACHINES **UNIT IV**

AC Servo Motor, Stepper Motor, Linear induction motor and Universal Motor - Construction, Principle of operation and applications.

UNIT V **INTRODUCTION TO ELECTRONICS**

Diode- PN Diode, Zener Diode, BJT Configurations, Rectifiers, Data acquisition system- ADC, DAC - principles of operation.

PERIODS

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

- Apply the basic laws of electrical circuits to linear circuit problems.[Apply]
- Summarize the working principle and construction of DC machines and transformers.[Understand]
- Explain the principle of operation and construction of AC machines. [Understand]
- Explain the working principle and construction of Special machines. [Understand]
- Illustrate the characteristics of basic semiconductor devices. [Understand]

TOTAL: 45

9

9

9

9

9

REFERENCE BOOKS:

- V K Mehta and Rohit Mehta, "Principles of Electrical Engineering and Electronics", S. Chand Publishing, New Delhi, 2019
- 2. Arumugam M. and Premkumar N., "Electric circuits theory", Khanna Publihsers, 7th edition, NewDelhi,2007.
- 3. Kothari D.P. Nagrath I.J, "Electric Machines", Tata McGraw Hill, 2009.
- 4. K. Venkataratnam, Special Electrical Machines, Universities Press, 2014.
- 5. R.J.Smith, R.C.Dorf, Circuits devices and systems, 5th edition, John Wiley and sons, 2001.
- 6. Malvino, A.P, Leach D.P and Gowtham Sha, Digital Principles and Applications, 6th Edition,

Tata McGraw hill, 2007.

19UGS210ENERGY AND ENVIRONMENTAL
SCIENCE LABORATORYLTPC0031.5

Objectives:

- To analyze the Band gap, moment of inertia, thermal conductivity and rigidity modulus of the materials.
- To gain knowledge in PHOTONICS.

PHYSICS LABORATORY (COMMON TO ALL BRANCHES)

LIST OF EXPERIMENTS

1. Determination of Energy band gap of a semiconductor.

2. Torsion pendulum – Determination of Moment of inertia of a metallic disc and rigidity

modulus of a given metallic wire.

3. Spectrometer - Determination of wavelength of mercury spectrum using grating.

4. Laser – Determination of numerical aperture and acceptance angle of an optical fiber

5. Newton's rings – Determination of radius of curvature of a convex lens

6. Lee's Disc - Determination of thermal conductivity of a bad conductor.

7. Determination of Solar cell characteristics using optical transducers kit.

• A minimum of FIVE experiments shall be offered

CHEMISTRY LABORATORY ENVIRONMENTAL SCIENCE LABORATORY

OBJECTIVES:

- \Box Apply the theoretical concepts to perform lab experiments.
- \Box To assess the water quality parameters.
- □ To acquire knowledge on water quality parameters for the analysis of industrial effluents.

LIST OF EXPERIMENTS (Common to All Branches)

- 1. Estimation of hardness of water by EDTA method.
- 2. Estimation of alkalinity of water sample.
- 3. Estimation of Chloride in water sample (Argentometric method)
- 4. Determination of DO in water
- 5. Estimation of chromium in tannery wastes
- 6. Estimation of available chlorine in bleaching powder
- 7. Estimation of iron by Spectrophotometry.
- 8. Determination of acidity of industrial effluents.

COURSE OUTCOMES:

After the successful completion of this course, the student shall be able to

CO1 - Apply the principles of Light and Elasticity to determine the Engineering properties of materials (Apply)

CO2 - Analyze the thermal conductivities of different bad conductors (Analyze)

CO3 - Analyze the Characteristics of a semiconductor (Analyze)

CO4 -Apply the basic knowledge of water quality testing for environmental sustainability. (Apply)

CO5 - Analyze the water quality parameters for industrial effluents to prevent water pollution. (Analyze L4)

CO6 - Estimate the quality of water that suits for domestic and industrial applications (Apply).

A minimum of FIVE experiments shall be offered **TOTAL: 30 Periods**

19UEE221 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING L T P C LABORATORY (COMMON TO CHEMICAL & AGRI)

0 0 3 1.5

OBJECTIVES :

• This course facilitates the students to get a basic practical exposure to electrical and electronics engineering.

LIST OF EXPERIMENTS

- 1. Verification of Ohm's Law
- 2. Verification of Kirchoff's Laws.
- 3. Measurement of Electrical Quantities voltage, current, power ad power factor in RLC Circuits.
- 4. Load test on electrical motor.
- 5. Study of Batteries.
- 6. Characteristics of PN Junction Diode.
- 7. Characteristics of Zener Diode.
- 8. Characteristics of BJT.
- 9. Study of UPS.
- 10. Study of Electrical and Electronic software packages.
- 11. Field visit to College EB Section.

TOTAL: 45 PERIODS

COURSE OUTCOMES

After the successful completion of this course, the student will be able to

- Solve the electrical parameters in a circuit using Ohm's law and Kirchhoff's laws. [Apply]
- Demonstrate the behavior of RLC circuits with electrical quantities and Explain the load handling capacity of electrical motor.[Understand]
- Interpret the basic construction, working and types of Batteries and select suitable battery for particular applications. [Apply]
- Illustrate the characteristics of Semiconductor diodes and Transistor and develop power supply circuits. [Apply]
- Interpret the basic structure and working of UPS and outline the electrical &electronics software tools.[Understand]
TRANSFORM TECHNIQUES AND PARTIAL DIFFERENTIAL EQUATIONS L T P C (COMMON TO AGRI, CHEMICAL, BIO MED AND BIO TECH)

OBJECTIVES :

- To make the student knowledgeable in formulating certain practical problems in terms of partial differential equations, solve them and physically interpret the results.
- To familiarize the students to formulate and identify certain boundary value problems encountered in engineering practices, decide on applicability of the Fourier series method of solution, solve them numerically and interpret the results.
- To acquaint the student with the basics of Z transform in its applicability to discretely varying functions, gained the skill to formulate certain problems in terms of difference equations and solve them using the Z transform technique bringing out the elegance of the procedure involved.

UNIT I FOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier Series – Parseval's identity – Harmonic analysis - Application of Fourier series - Gibb's Phenomenon.

UNIT II FOURIER TRANSFORM

Fourier integral theorem (without proof) – Fourier transform pair – Sine and Cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity – Application of Fourier Transform.

UNIT IIIZ-TRANSFORM AND DIFFERENCE EQUATIONS9+3

Z-transform – Elementary properties – Inverse Z-transform – Convolution theorem – Initial and Final value Theorems - Formation of difference equations – Solution of difference equations.

UNIT IV PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations – Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT VAPPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS9+3

Introduction of Partial differential equations - Solutions of one dimensional wave equation - One

9+3

3

1

0

4

9+3

9 + 3

dimensional equation of heat conduction – Steady state solution of two-dimensional heat equation (Insulated edges excluded) – Fourier series solutions in Cartesian coordinates.

TOTAL : 45 (L) + 15 (T) = 60 Periods

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

- Apply the knowledge of Fourier series for the given function or Discrete data and compute the Periodic function arising in the study of Engineering problems.(CO1) AP K3
- Apply the knowledge of Fourier transform and its properties which are used to transform signals between time and frequency domain.(CO2) AP K3
- Apply the acquired knowledge of Z transform and its properties inverse Z transform and difference equations .(CO3) AP K3
- Apply the knowledge of partial differential equation in solving linear and higher order partial differential equation.(CO4) AP K3
- Apply the knowledge of PDE in solving linear, higher order and one dimensional Wave, Heat flow equation.(CO5). AP K3
- Understand the basic concept of periodic , non-periodic function and nature of partial differential equation. (CO6) U-K2

TEXT BOOKS:

- 1. GREWAL B.S, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 42nd Edition, (2012).
- 2. KANDASAMY.P, THILAGAVATHY.K, and GUNAVATHY.K, Engineering Mathematics III, S.Chand & Company Ltd., New Delhi, 3rd Edition, (1996).
- 3. VEERAJAN.T, "Higher Engineering Mathematics", Yes Dee Publishing Pvt. Limited, 2015.

REFERENCE BOOKS:

- 1. BALI N.P., MANISH GOYAL and WATAINS, "Advanced Engineering Mathematics", Firewall Media (An imprint of Laxmi Publication Private limited) New Delhi, 7th Edition, (2009).
- 2. RAMANA.B.V, "Higher Engineering Mathematics" Tata McGraw Hill, New Delhi, 11th Reprint (2010).
- 3. GLYN JAMES, "Advanced Modern Engineering Mathematics", Pearson Education, New Delhi, 3rd Edition, (2007).
- 4. ERWIN KREYSZIG, "Advanced Engineering Mathematics", Wiley India, 10th Edition, (2011).

СО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO. 1	3			1								1	2	
CO. 2	3			1								1	2	
CO. 3	3			1								1	2	
CO. 4	3			1								1	2	
CO. 5	3			1								1	2	
CO. 6	3			1								1	2	

011011203	DDACESS CHEMISTDY	L	Т	Р	С
19UCH302	PROCESS CHEMISTRY	3	0	0	3

Objective:

- To make the students to understand the basics of organic chemistry reactions and do the structural analysis of biological compounds to utilize sustainability ideas and tools to identify green chemistry innovation.
- To learn the surface and interfacial phenomena relevant to the thin film coatings, solid surfaces and colloids for better processing of different industrial products, intermediates and raw materials.

Module		Topics	L
I	A	Unit Process: Definitions – reagents- mechanism – catalyst – illustrations of the following unit process – nitration – halogenation – oxidation & reduction – esterification.	9
II	A	Carbohydrates: Introduction–Classification, Structure and Chemical Properties of monosaccharides- Glucose, fructose, disaccharides-Sucrose and polysaccharides-starch and cellulose, industrially used Carbohydrate derivatives – structure and properties of artificial sweeteners - Saacharin and Aspartame Aminoacids: Classification Preparation-Strecker Gabriel phthalimide and	9
	В	physical andchemical properties.	
ш	A	Synthetic Applications of Organic Compounds: Synthetic applications of Grignard reagents, Organolithium, Organolead and Organozine- synthetic applications of active methylene compounds-malonic ester and acetoacetic ester.	9
	В	Dyes: Colour and constitution - classification of dyes based on their chemical structure and their applications. Important dyes -Maritus yellow, Congo red, Bismarck brown, Auramine - O, Crystal violet, Magenta, Uranine, Indigo, Thioindigo and Alizarin (preparation and uses only).	
IV	А	Introduction to Colloids: Surfaces and Interfaces, Surface and Interface – Molecular Origin, the work of cohesion and adhesion, Interaction forces and potential, chemical and physical interaction, classification of physical forces. Van der Waals force, interaction between surface and particles	9
	В	Electrostatic forces and electric double layer, DLVO theory, Hamaker constant, Boltzmann distribution, Debye length, specific ion adsorption, ion adsorption, Stern layer, Electrostatic, steric and electrosteric stabilization, Zeta potential.	
v	A	Chemical Kinetics: Rate of chemical reactions. Determination of order and molecularity of a reaction. Calculation of rate constants. Theories of reactionrates. Consecutive, Parallel and opposing reactions - reactions in solutions - catalysis - homogeneous and heterogeneous catalysis, enzyme catalysis, applications of catalysis.	9
		Total Hours	45
	Bloom's Level		
CO1	Abili chem	ty to understand the fundamental principles of organic chemistry that include ical bonding, nomenclature and structural isomerism	Understand
CO2	Appl	y the knowledge of Process chemistry to solve the industrial problem	Apply
CO3	Abili based	ty to analyse the properties such as, reactivity and stability of an organic molecule I on structure, including structural conformation.	Analyze

CO4	Ability to Investigate the surface properties of the solid, their isotherms and surface area calculation.	Evaluate					
CO5	Ability to formulate and develop models related to organic and physical chemistry in process industry	Create					
CO6	Ability to conduct experiments using modern tools						
Labor	atory						
Organi	c chemistry preparation						
# Head	ling mantle						
# Cond	lenser						
# RB f	lask						
Semi r	nicro analysis	30 Hrs					
# Test	tube	50 1115					
# Boili	ng tube						
Physic	al chemistry experiments						
#Redo	x (permanganimetry)						
#Cond	uctometric titration						
#Poten	tiometric titration						
#Ester	hydrolysis						
Text B	Books						
1.	1. Tiwari K.S. Vishnoi N.K. and Marhotra S.N., A text book of Organic Chemistry, II Edition, Vikas						
2	Publishing House Pvt.Ltd., (1998), New Delhi.						
2.	Robert Thornton Morrison and Robert Neilson Boyd, "Organic Chemistry", 6th Edition, Pr	entice- Hall of					
2	India (P) Ltd NewDelni (2002)	7.1.10.11.1.					
3.	Puri .B.R., Sharma. L.R., Pathania M.S., Elements of Physical Chemistry, Second Edition, V	Vishal Publishing					
De	company, Jalandhar, fourth edition 2013.						
Keiere	ence Books James Manala Advanced One and Chamisters Departients Machanismus and Structures 7th Edit	· · · · · · · · · · · · · · · · · · ·					
1.	Jerry March, Advanced Organic Chemistry - Reactions, Mechanisms and Structure /in Edit	ion, John whey					
2	& SOIIS, New LOIK, 2013.	ition & Chand					
۷.	som .P.L., Charmarna.O.P, Dasn.U.N, Textbook of Physical Chemistry, Twenty Second Ed	nion, S.Chand					
	and Sons, NewDeini, 2012.						
Course	Course Level Assessment Questions						
	We want the machanisms of nitration and helesenstion of henzens						
1.	Memorize the mechanisms of intration and halogenation of benzene.						
2. 2	Explain why handened does not undered addition reactions.	ions.					
5. 4	Explain why benzene does not undergo addition reactions.						
H. Cours	a Outcome 2 (CO2).						
1	Explain in detail about disaccharides with neat diagram						
1.	Give a brief note on glycolysis pathway						
2.	2. Orve a offer hole off grycorysis pathway 3. Define basic amine acids and acidic amine acids						
З. Д	A How amino acids are classified based on their occurrance? Explain						
4. How annue actus are classified based on their occurrence? Explain. How the end group analysis of protein helped us to find the nature of honded amino acids? Justify							
Coure	e Outcome 3 (CO3).						
1	Applications of a new diorganozine reaction to the synthesis active methylene compounds						
2	Discuss various synthetic applications of Grigonard reagents						
2.	Classify the dye according to its structure and method of application and illustrate the pre-	paration of					
5.	the following dyes 1 congo dye 2 melachite green						
4	Give reasons for the presence or absence of colour in the following						

A) $C_6H_5N=NC_6H_5$ (Red) B) C₆H₆ (Colourless) C) $NaO_3SC_6H_4N=NC_6H_4N(CH_3)_2$ (Orange) **Course Outcome 4 (CO4):** 1. Remember the terms adsorptions and catalysis 2. Select suitable theory for monolayer adsorption. 3. To Understand one component system of Water and Sulphur and their phase transitions. 4. Concern the concepts of Vapour pressure & boiling point on ideal and non-ideal solutions **Course Outcome 5 (CO5):** 1. Study of first order, second order, third order, zero order and pseudo order reactions 2. Chain reactions, branched chain reactions 3. Concept of activation energy and influence of ionic strength in rates of reactions. 4. Derive the kinetics of First order unimolecular reactions Complied by Dr. M. Sethuram, AP(Sr.G)/Chemical Recommended by BoS on 05.09.2020 Approved by Academic Council on

Course Outcomes	Skill	PO	Blooms	Assessing tools
Ability to understand the fundamental principles of organic chemistry that include chemical bonding, nomenclature and structural isomerism	Remember/Understand		L1/L2	Assignment/Exam/ Quiz/ Seminar
Apply the knowledge of Process chemistry to solve the industrial problem	Apply		L3	Assignment/ Exam/ Quiz
Ability to analyse the properties such as, reactivity and stability of an organic molecule based on structure, including structural conformation.	Analyse		L4	Assignment/ Exam/ Quiz
Ability to Investigate the surface properties of the solid, their isotherms and surface area calculation.	Investigation		L5	Exam/ Quiz/Assignment/Se minar
Ability to formulate and develop models related to organic and physical chemistry in process industry	Design		L6	Assignment/Exam/S eminar
Ability to conduct experiments using modern tools	Modern Tools			Lab/Seminar

19UCH303

HEAT POWER ENGINEERING

 L
 T
 P
 C

 2
 1
 0
 3

OBJECTIVE

This Course provides the basic concept of heat power engineering PVT behaviour of fluids, thermodynamic property relations and their application to fluid flow, power generation and refrigeration processes.

MOD	DULE	TOPICS				
I	A	Laws of Thermodynamics: Thermodynamic systems-closed, open and isolated. Property, state, path and process, work, Energy. Zeroth, First and Second laws of Thermodynamics (Basic concepts only), Internal energy, Specific heat capacity and Enthalpy. Heat Engine, Heat Pump, Refrigerator.	9			
Π	А	Thermodynamic Cycles: Carnot Cycle, Internal combustion engines: Otto, Diesel and Combined cycle; Gas Turbine Power Plant: Brayton and Steam Power plant: Rankine cycles – determination of cycle efficiency.	9			
III	A	Boilers: Types and classification of boilers: water tube, fire tube, coal, oil and gas fired boilers; Stoker fired, pulverized and fluidized bed boilers. Mountings and accessories. Performance and efficiency calculation of boilers.	9			
IV	A	Properties of Steam: Properties of steam, Mollier chart, determination of dryness fraction of steam- Different types of calorimeters. Concept of Steam distribution systems. steam traps- types and their characteristics. Energy conservation opportunities in steam systems.	9			
V	Α	Turbines and Vacuum Systems: Steam turbines- types and principles: Reaction and impulse turbines; Application of co-generation principles in process industries. Gas turbines- principle and working. Production of Vacuum: Systems and Equipment – Compression and Vacuum Pumps, Steam Ejectors; Instrumental methods of Vacuum measurement.	9			
		Total Hours	45			

Text Books

1. Rajput R.K., "Thermal Engineering", 9th Edition, Laxmi Publications, 2010.

2. Rudramoorthy R., "Thermal Engineering", 4th Edition, Tata McGraw Hill Publishing Company, New Delhi, 2006.

Reference Books

1.Kothandaraman, C.P., Domkundwar and Domkundwar, "Course in Thermodynamics and Heat Engines", 3rd Edition, Dhanpat Rai & Sons, New Delhi, 2011.

2. Ballaney P.L., "Thermal Engineering", Khanna Publishers, New Delhi, 2005.

COURSE OUTCOMES

The stu	dents have the
CO1	Ability to understand the fundamental concepts of heat and power engineering as per the
	requirement of Chemical Engineering.
CO2	Ability to demonstrate the principles of heat and power engineering solve complex problems
	of heat flow.
CO3	Ability to analyse various heat flows.
CO4	Ability to investigate and select steam for various industrial applications.
CO5	Ability to formulate and develop models related to heat power engineering.
CO6	Ability to conduct experiments using modern tools

Course	Course Outcomes Mapping with Bloom's Taxonomy and Programme Outcomes								
	Course Outcome	Skill	РО	Bloom's Taxonomy	Assessment Tools to measure CO				
CO1	Ability to understand the fundamental concepts of heat and power engineering as per the requirement of Chemical Engineering.	Remember/ Understand	_	L1/L2	Exam/Assignment/ Seminar/Quiz				
CO2	Ability to demonstrate the principles of heat and power engineering solve complex problems of heat flow.	Apply		L3	Exam/Assignment/ Seminar/Quiz/Lab/ Project				
CO3	Ability to analyse various heat flows.	Analyze		L4	Exam/Assignment/ Seminar/Quiz/Lab/ Project				
CO4	Ability to investigate and select steam for various industrial applications.	Investigate		L5	Mini Project/Assignment/ Quiz/Lab/Exam				
CO5	Ability to formulate and develop models related to heat power engineering.	Design		L6	Assignment/Lab/Ex am/Seminar				
CO6	Ability to conduct experiments using modern tools	Modern Tools		-	Lab/Project				
	Course Los	A geogemon	t Anost	iong					

Course Outcome 1 (CO1):

1. Determine the number of degrees of freedom when a binary mixture is in equilibrium with its vapour.

- 2. Explain briefly the Zeroth law of thermodynamics.
- 3. Find the phase rule as applicable to a non-reacting system.

4. A spherical balloon of diameter 0.5 m contains a gas at 1 bar and 300 K. the gas is heated and the balloon is allowed to expand. The pressure inside the balloon is found to vary linearly with the diameter. What would be the work done by the gas when the pressure inside reaches 5 bar?

Course Outcome 3 (CO3):

1. State the Van-Laar Equation.

2. Derive ansignificance of Co-existence equation.

3.Water (1) – hydrazine (2) system forms an azeotropes containing 58.5% (mol) hydrazine at 393 K and 101.3 KPa. Calculate the equilibrium vapour composition for a solution containing 20 % (mol) hydrazine. The relative volatility of water with reference to hydrazine is 1.6 and may be assumed to remain constant in the temperature range involved. The vapour pressure of hydrazine at 393 K is 124.76 KPa?

4. Explain about the Zero Area Method for checking/analyze the thermodynamics consistency of VLE data.

Course Outcome 4 (CO4):

- 1. Explain about the Standard Free Energy and how it is related to equilibrium constant?
- 2. Derive an expression for the effect of temperature and pressure on equilibrium constant and
- compare theexpression.

3.How can I calculate the volume of steam produced at 373K at 101325 pa in a closed vessel. 4.How can I neglect heat of dilution from heat of reaction in isothermal titration calorimetry.

Course Outcome 5 (CO5):

- 1. Obtain the capacity of a refrigerator. .
- 2. Explain about the "throttling process".
- 3. How to choose the optimal pressures for the extractions of a regenerative rankine cycle.
- 4. How Can the exhaust pressure for a steam turbine is selected.

10UCH304	ELUID ELOW OPERATIONS	LT		Р	С
190011304	FLUID FLUW OPERATIONS	2	1	3	4.5

Objective:

To make the students understand the system of units and impart the knowledge of applying basic quantitative laws and equation of fluid flow. To enable to handle important engineering tasks of moving fluids through process equipment and measuring & controlling fluids in flow.

MOL	DULE	TOPICS	L (Hrs)
I	Α	Fundamentals of fluids and fluid properties: Introduction and significance of Fluid Mechanics in Chemical Engineering. Fluid P roperties, Types of fluids- Newton's law of Viscosity Newtonian and Non-Newtonian fluids.	9
	В	Fluid Statics: Pascal's law, Hydrostatic equation and its applications; hydrostatic forces on plane surfaces -total pressure and centre of pressure, buoyancy and meta centre, pressure measurement.	
II	A	Fluid Dynamics Types of fluid flows - Basic equations governing fluid flow, Equation of Continuity and its application, Equation of motion – Bernoulli's equation and its application in fluid flow, Significance of Navier - Stoke's equation.	9
	В	Boundary layer flow: Boundary layer and its definition – displacement thickness – momentum thickness - energy thickness.	
	Α	Flow through pipes : Loss of energy in pipes major and minor energy losses – pipes in series and parallel –equivalent pipe	
III	В	Dimensional Analysis And Similitude : Fundamental and secondary dimensions. Dimensional homogeneity – Rayleigh and Buckingham Pi methods – relationship between dimensional analysis and similitude - use of dimensional analysis for scale up studies.	9
IV	A	Fluidization: Fluidization- Conditions for fluidization- Minimum fluidization velocity-Types of fluidization- Expansion of fluidized bed-Applications of fluidization. Continuous fluidization; slurry and pneumatic transport	9
V	A	Transportation of fluids : Pumps –Classification and working principle of Centrifugal Pumps and Positive Displacement Pumps– performance characteristics and sizing of pumps, selection of pumps, Compressors and Fans	9
		Total Hours	45
Labor	ratory Pipe F Orifice Ventur Rectar Minor Fluidiz	riction e Meter ri meter Igular notch Losses in pipes zed Bed	30

- Packed Bed
- Centrifugal Pump
- Reciprocating Pumps

Text Books

1. M. White, Fluid Mechanics, 8th Edition, Tata-McGraw Hill, 2016.

2. V. Gupta and S. K. Gupta, Fundamentals of Fluid Mechanics, 2nd Edition, New Age International 2011.

3. W. L. McCabe, J. C. Smith and P. Harriot, Unit Operations of Chemical Engineering, 7th Edition, McGraw-Hill International Edition 2006.

4. O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Hall of India, 2005.

5. R. W. Fox, P. J. Pritchard and A. T. McDonald, Introduction to Fluid Mechanics, 7th Edition, Wiley-India 2010.

6. Fluid Mechanics for Chemical Engineers, McGraw Hill Noel de Nevers, 3rd Edition, McGraw Hill, New York, 2004.

Reference Books

- 1. James O Wilkes and Stacy G Bike, "Fluid Mechanics for Chemical Engineers' Prentice Hall PTR (International series in Chemical Engineering) (1999)
- 2. Rajput, R.K., "A Text book of Fluid Mechanics and Hydraulic Machines" ,S.Chand and Co., New Delhi, 2008.
- 3. Bansal, R.K., "Fluid Mechanics and Hydraulic Machines", Laxmi Publications, New Delhi, 2005
- Modi, P.N. and Seth, S.M., "A Text book of Fluid Mechanics and Hydraulic Machines", Standard Book House, New Delhi, 2007

COURSE OUTCOMES

The stu	dents will have the							
CO1	Ability to define, understand and explain the fundamental concepts of fluids and its mechanics							
CO2	Ability to apply the principles of fluid statics and dynamics and solve problems of fluids flow							
CO3	Ability to analyse various fluid flows							
CO4	Ability to investigate and select pipes for	various indus	trial ap	plications				
CO5	Ability to formulate and develop mode	els using dim	ensior	nal analysis				
CO6	Ability to conduct experiments using r	modern tools						
Course	<mark>e Outcomes</mark> Mapping with Bloom's Taxo	nomy and Pr	ogram	me Outcome	25			
	Course Outcome	Skill	РО	Bloom's Taxonomy	Assessment Tools to measure CO			
CO1	Ability to define, understand and explain the fundamental concepts of fluids and its mechanics	Remember/ Understand		L1/L2	Exam/Assignme nt/Seminar/Quiz			
CO2	Ability to apply the principles of fluid statics and dynamics and solve problems of fluids flow	Apply		L3	Exam/Assignme nt/Seminar/Quiz /Lab/Project			
CO3	Ability to analyse various fluid flows	Analyze		L4	Exam/Assignme nt/Seminar/Quiz /Lab/Project			
CO4	Ability to investigate and select pipes for various industrial applications	Investigate		L5	Mini Project/Assignm ent/Quiz/Lab/Ex am			
CO5	Ability to formulate and develop	Design		L6	Assignment/Lab			

	models using dimensional analysis				/Exam/Seminar	
CO6	Ability to conduct experiments using	Modern		-	Lab/Project	
	modern tools	Tools				
	Course Level As	sessment Que	stions			
Cour	se Outcome 1 (CO1):					
1.	Determine Mass density, Specific volume, a is 0.85	and Specific w	eight o	of liquid whos	e specific gravity	
2. 3. 4.	 The space between two square flat plate is filled with oil. Each side of the plate is 60cm. The thickness of the oil film is 12.5 mm, the upper plate which moves at 2.5 m/sec requires a force of 10 kgf to maintain the speed. Determine dynamic viscosity of oil in poise, Kinematic viscosity of oil in stokes, if the specific gravity of oil is 0.95. Find the surface tension of soap bubble of 40 mm, when the inside pressure of the bubble 2.5N/m²above atmospheric pressure. Two plates are placed at a distance of area 0.15mm,lower plate is fixed with upper plate having the surface area of 1m2 pulled at 0.3m/s. Find the force and power required to maintain the 					
	speed of fluid separating them having visco	sity 1.5Poise.			_	
Cour	se Outcome 2 (CO2):					
1. 2. 3. use va thr	 State Pascals Law. Derive Euler's equation of motion and hence deduce Bernoulli's equation. A horizontal venturimeter with inlet and throat diameter 300 mm and 100mm respectively is used to measure the rate of flow. The pressure intensity at the inlet is 130 kN/m² and the vaccum pressure at the throat is 350mm of mercury. Assuming 3% head lost between inlet and throat find the coefficient of diacherge. 					
Cour	se Outcome 3 (CO3					
1. 2. 3. 4.	 Course Outcome 3 (CO3 The stream function is given by ψ =5x-6y, Calculate the velocity components and also magnitude and direction of the resultant velocity at any time. Explain briefly the different types of flow Determine the rate of flow of water through the pipe of diameter 20 cm and length 50m with one end of the pipe is connected to a tank and the other end is open to atmosphere. The pipe is horizontal and the height of water in the tank is 4m above the centre of the pipe. Consider all the minor losses and take f = 0.009 Three pipes of length 800 m, 500 m, and 400 m and of diameter 500 mm, 400 mm, and 300 mm respectively connected in series. These pipes are to be replaced by a single pipe of length 1700 m. Find the diameter of the single pipe. 					
Cour	se Outcome 4 (CO4):			-		
1. 2.	The rate of flow of water through the ho changes from 200mm to 400 mm. The pr Find i) Loss of head due to sudden enlarge Horizontal pipe of diameter 300mm is atta of flange. The ratio of flow of water is 0.5 pipe are given as 14.32N /cm ² and 11.58 coefficient of contraction.	rizontal pipe essure intensit ement, ii) press ached to anoth 5m ³ /s. The pre N/cm ² respect	is 0.25 by in the sure in- ner pipe ssure i ively.	5m ³ /s. The dia he smaller pipe tensity in large e of diameter ntensities in the Calculate the	meter of the pipe e is 11.772N/cm ² . e pipes. 250mm by means ne large and small head loss and the	

Course Outcome 5 (CO5):

- 1. Using Buckingham π Theorem, Show that the velocity through a circular orifice is given by $V = \sqrt{2gH} \phi$ (D/H, $\mu /\rho vH$) where, H=head, D=diameter of the orifice, μ =coefficient of viscosity, ρ mass density, g= acceleration due to gravity.
- 2. Find an expression for the drag force on smooth sphere of diameter D, moving with a uniform v V in a fluid density ρ and dynamic viscosity μ .
- 3. List out the various types of model Laws and explain any three. Obtain Scale ratio for velocity, time for the models governed by equality of Froude's number.
- 4. Write the application of Dimensional analysis for scale up industries.
- 5. State the concept of Fluidization.
- 6. Define Pump and its classification.

Course Outcome 6 (CO6):

- 1. A 7.2m high and 15m long spill way discharges 94 m³/s under a head of 2m. If a 1:9 scale model of this spill way is to be constructed, determine the model law to be used model dimensions, head at spill way and discharge in the model, if the model experiences a force of 764N. Determine from the prototype.
- 2. Sketch the characteristics curves of centrifugal pumps.

101/01		L	Т	Р	C
IYUCH	1505 CHEMICAL PROCESS CALCULATIONS	3	0	3	3
AIM				•	
To study	the basics principles and the calculation techniques used in the cher	nical i	ndustry	/.	
OBJECTIV	ES			2	
This cour	rse aims to acquire a concept of degree of freedom and its application	on to so	olution	of mass	5
and energy t	balance equations for single and network of units.			T II.	-
MODULE	IUPICS			L Hr	S
Ι	Basic and derived units, Ideal and real gas laws - Gas constant - ca of pressure, volume and temperature using ideal gas law. Use of p pressure and pure component volume in gas calculations, applicati real gas relationship in gas calculation and Stoichiometric principl	alculati artial ions of es.	ons	9	
MATERIAL BALANCE WITHOUT CHEMICAL REACTION: Application of material balance to unit operations - distillation, evaporation, drying, extraction and II WITH CHEMICAL REACTION: Material balance for the systems involving chemical reaction - Limiting and excess reactants – yield and			e	9	
selectivity. Recycle and Purging					
ш	III Humidification and Dehumidification: Basic concepts - Calculation of absolute, molal, relative and percentage humidities –use of Psychrometric chart			9	
IV	IV ENERGY BALANCE Heat capacity of solids, liquids, gases and solutions, evaluation of enthalpy. Heat of reaction, formation, combustion, solution and mixing. Effect of pressure and temperature on heat of reaction			9	
V	V COMBUSTION Fuels and combustion; Calculation of theoretical and excess air from combustion of solid, liquid and gaseous fuels. Composition of flue gases by Orsat analyzer			9	
	То	tal Ho	ours	45	
	Course Outcomes	Bloor	n's Le	evel	
CO1	Ability to understand the conversion factor and basic concept of various unit operations and combustion, heat capacity.	Reme	ember/	Underst	and
CO2	Ability to apply the stoichiometric principles for solving the material, energy balance, humidification and combustion problems.A			ply	
CO3	Ability to analyse the suitable basis for material balance and An energy balance problems and analyse the psychrometric chart, orsat analyzer.			lyse	
CO4	Ability to evaluate the complex problems involving with and without chemical reaction with the combustion calculation by using Orsat analyzer.Evaluate the complex problems involving with and Evaluate the complex problems involving with and the complex problems involving with and Evaluate the complex problems involving with and Evaluate the complex problems involving with and 		Eval	uate	

CO5	Ability to formulate the steady state material balance and energy	Create
	balance for the unit operations and to compute the concentration	
	degree of saturation and solve combustion problems.	
CO6	Ability to design the solution for various unit operations	Modern Tools
	involving with and without chemical reaction, combustion	
	problems by using ASPEN, HYSIS, CHEMCAD softwares.	

Text Books

1. Himmelblau D.M., —Basic Principles and Calculations in Chemical Engineering^{II}, 8th Edition, Prentice Hall of India, New Delhi, 2013.

2. Venkataramani V. and Anantharaman N. and Sheriffa Begam K.M., —Process Calculationsl, 2ndEdition, Prentice Hall of India, New Delhi, 2011.

Reference Books

1. Hougen O.A., Watson K. M. and Ragatz R. A., —Chemical Process Principles. Part I. Material and Energy Balances^{II}, 2nd Edition, John Wiley & Sons, New York, 1956.

2. Bhatt B.L and Vora S.M., —Stoichiometryl, 4th Edition, Tata McGraw Hill Publishing Company, New Delhi, 2004.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. Derive the relationship between partial pressure, Mole fraction of component gas to total pressure
- 2. A chemist is interested in preparing 500 ml of 1 normal, 1 molar and 1 molal solution of sulphuric acid. Assuming the density of sulphuric acid solution to be 1.075 g/cm3, calculate the quantities of sulphuric acid to be taken to prepare these solutions
- 3. A natural gas has the following by volume : CH4 = 82%, C2H6 = 12% and N2 = 6%. Calculate the density of gas at 288 K (150C) and 101.325 kPa and composition in weight percent.
- 4. A gaseous mixture has the following composition by volume CO₂ =8%, CO=14%, O₂= 6%, H₂O=5%, CH₄=1% and N₂ = 66% Calculate (i) Average molecular weight of gas mixture (ii) Density of gas mixture at 303K (300 C) and 101.325 KPa

Course Outcome 2 (CO2):

- 1. An evaporator is fed with 15000 kg/h of a solution containing 10% NaCl, 15% NaOH and rest water. In the operation water is evaporated and NaCl is precipitated as crystals. The thick liquor leaving the evaporator contains 45% NaOH, 2% NaCl and rest water. calculate (a) kg/h water evaporated (b) kg/h salt evaporated (c) kg/h thick liquor
- 2. It is desired to have a mixed acid containing 40% HNO3, 43% H2SO4 and 17% water by weight. Sulphuric acid of 98% by weight is readily available. Calculate (a) the strength of nitric acid and weight ratio of sulphuric acid to nitric acid.
- 3. Formaldehyde is produced by dehydrogenation of methanol

$CH_{3}OH \longrightarrow HCHO+H_{2}$

The per pass conversion is 67%. The product leaving the reactor is fed to separation unit battery where formaldehyde is separated from methanol and hydrogen. The separated methanol is recycled to reactor. If the production rate of formaldehyde is 1000 kg/h. Calculate (a) combined feed ratio (B) flow rate of methanol required to the process as fresh feed.

4. In manufacture of HCl, gas containing 20% HCl and 80% air by volume enters an absorption tower at a temperature of 323K and pressure of 99.325 kPa 98% of HCl is absorbed in water and remaining gas leaves the tower at a temperature of 293 K and a pressure of 97.22 kPa. Calculate (a) the weight of HCl absorbed/ removed per m3 of gas entering the system and (b) the volume of gas leaving per m3 of gas entering the system

Course Outcome 3 (CO3):

- 1. The dry bulb temperature and dew point of ambient air were found to be 302K (29oC) and 291K (18oC) respectively, Barometer reads 100Kpa. Calculate:
 - ➤ The absolute Molal humidity
 - \succ The absolute humidity.
 - ➢ % Relative Humidity.
 - ➢ % Saturation.
 - ➢ Humid Heat
 - ➢ Humid Volume.

Data: Vapor pressure of water at 291K = 2.0624KPa, Vapor pressure of water at 302K = 4.004KPa.

2. A mixture of benzene and dry air at a temperature of $303K (30^{\circ}C)$ and a pressure of 101.325 kPa is found to have a dew point of $288K (15^{\circ}C)$. Calculate

a) Percentage by volume of benzene.b) Moles of benzene per mole dry air.

Data: Vapor pressure of benzene at 288K = 7.999kPa

3. An air (b)- water(a) sample has a dry bulb temperature of 500 C and wet bulb temperature of 350 C. Estimate its properties at a total pressure of 1 atm

1 atm= 1.0133x105 N/m2 Molecular weight of air = 28.84

- (a) Nv' (Chart) = 0.03 kg W.v/Kg.d.a
- (b) % humidity (Chart) = 35%

% relative saturation = Partial pressure/ vapour pressure.

4. A gas mixture containing benzene vapor is saturated at 101.325kPa and 323K (50oC). Calculate the absolute humidity if the other component of the mixture in (a) nitrogen and (b) carbon dioxide. Data: vapor pressure of benzene at 323K = 36.664kPa.

Course Outcome 4 (CO4):

1. A stream of nitrogen flowing at a rate of 100kmol/hr is heated from 303K (30oC)to 373K (100°C). Calculate the heat that must be transferred.

Data: Cp^o for Nitrogen = 29.5909 -5.141X 10-3 T +11.1829X10-6 T2 - 4.968 X 10-9T3

2 .A stream of carbon di oxide flowing at a rate of 100kmol/min is heated from 298 K (25° C) to 383 K (110° C). Calculate the heat that must be transferred using Cp^odata.

Data: $Cp^{o} = a + bT + cT^{2} + dT^{3}$, KJ/kmol.K

Gas	a	b X 10 ³	c X 10 ⁶	d X 10 ⁹
CO_2	21.3655	64.2841	-41.0506	9.7999

3. Calculate the standard heat of formation of liquid ethyl acetate at 298K. Data:

Standard heat of formation of CO2 (g) = -393.51 KJ/mol

Standard heat of formation of H2O (l) = -285.83 KJ/mol

Standard heat of combustion of liquid ethyl acetate C4H8O2 = $\Delta H^{\circ}c$ = -2230.91 KJ/mol.

4. Toluene is to be heated from 290 K (17° C) to 350 K (77° C) at the rate of 250 g/s. calculate the heat to be supplied to toluene using the heat capacity data given below. Data:

 $Cp^{o} = a + bT + cT^{2} + dT^{3}$, KJ/kmol.K

	Gas	a	b X 10 ³	c X 10 ⁶	d X 10 ⁹	
	Toluene	1.8083	812.223	-1512.67	1630.01	

Course Outcome 5 (CO5):

- Crude oil is analyzed to contain 87% carbon, 12.5% hydrogen and 0.5% sulphur (by weight). Calculate the net calorific value of the crude oil at 298K (25°C) Data: Gross Calorific value of crude oil at 2989K is 45071KJ/Kg oil. Latent heat of water vapor at 298K (25°C) = 2442.5 KJ/Kg.
- 2. A natural gas contains 85% methane and 15% ethane by volume. Calculate the GHV of this fuel in KJ/Kg from the standard heats of combustion of methane and ethane.

$$CH_4 + 2O_2 \rightarrow O_2 + 2H_2O$$

 $C_2H_6 + 3.5 O_2 \longrightarrow 2CO_2 + 3H_2O$

3. The Orsat analysis of the flue gases from a boiler chimney, by volume is as given below: CO2 : 11.4%, O2 : 4.2% and N2 : 84.4%

Assuming Complete Combustion,i)Calculate the % excess air. ii)Find the C:H ratio in the fuel.

4. The analysis of a refinery gas by volume is:

H₂: 74%, CH₄ : 13.5%, C₂H₆: 7.4%, C₃H₈ : 3.6%, C₄H₁₀ : 1.2% C₅H₁₂: 0.3%. Data:

Component	GCV, KJ/mol	NCV, KJ/mol
CH_4	890.65	802.62
C_2H_6	1560.69	1428.64
C_3H_8	2219.17	2043.11
C_4H_{10}	2877.40	2657.32
$n-C_5H_{12}$	3535.77	3271.67

Standard Heat of Formation of H2O (g) = -241.82KJ/mol Standard Heat of Formation of H2O (l) = -285.83 KJ/mol Specific volume of the natural gas at 298K (25°C) and 101.3kPa = 24.465 m³/kmol. Calculate the GCV and NCV of the refinery gas in KJ/mol, KJ/kg, KJ/m³

Course Outcomes	Skill	PO	Blooms	Assessing tools
Ability to understand the conversion factor and basic	Remember/Understand		L1/L2	Assignment/Exam/ Quiz/
concept of various unit operations and combustion, heat				Seminar
capacity.				
Ability to apply the stoichiometric principles for solving	Apply	PO1	L3	Assignment/ Exam/ Quiz
the material, energy balance, humidification and				
combustion problems.				
Ability to analyse the suitable basis for material balance	Analyse	PO2	L4	Assignment/ Exam/ Quiz
and energy balance problems and analyse the				
psychrometric chart, orsat analyzer.				
Ability to evaluate the complex problems involving with	Evaluate	PO3	L5	Exam/ Quiz/
and without chemical reaction with the combustion				Assignment/Seminar
calculation by using Orsat analyzer.				
Ability to formulate the steady state material balance	Create	PO4	L6	Assignment/Exam/
and energy balance for the unit operations and to				Seminar
compute the concentration degree of saturation and				
solve combustion problems.				
Ability to design the solution for various unit operations	Modern Tools	PO5		Lab/Seminar
involving with and without chemical				
reaction, combustion problems by using				
ASPEN, HYSIS, CHEMCAD softwares.				

	L	Т	Р	С
19UCH306 ENGINEERING MATERIALS FOR PROCESS INDUSTRIES	2	0	0	2

Objective:

- Impart the knowledge and implementation of material structure, processing, properties, and performance of all classes of materials used in engineering systems.
- To impart knowledge on different engineering materials for the construction of process industries.
- Ability to analyze any problem in a simple and logical manner and to predict the physical phenomena and thus lay the foundation for engineering applications.

Moo	Module Topics		L			
		ENGINEERING METALLURGY & STRUCTURE OF MATERIALS				
		Properties of materials: Mechanical, Physical & Chemical properties. Industrial				
		Engineering Materials – Ferrous & Non Ferrous metals & alloys – Introduction				
Ι		to various heat treatment processes & Mechanical properties - tension test,	9			
		hardness test - brinnel, vickers, rockwell, micro hardness test - shore				
		scleroscope. Impact test, fracture - grifiths' theory, fracture toughness,				
		embrittlement phenomena. Fatigue and creep.				
тт		Stainless Steels: Special steels and alloys-grades, general criterion of selection	0			
		of material of construction in process industries and its applications.	,			
III		Non Ferrous Metals: Nickel, Aluminium, Copper, Chromium, Lead,	9			
		Titanium, Zinc, magnesium and their alloys; applications in process industries.				
		Organics and Composites: Polymers, Resins, Composites, Refractories, Glass,				
IV		Wood, Rubber, Silicones and Carbon as material of construction in chemical	9			
X 7		Materials for Special Applications: Metallic glasses and oxides for high				
V		temperature applications; Bio materials- bio ceramics and polymers; materials	9			
		for biomedical, space and cryogenics; Introduction to Sour service.				
		Total Hours	45			
I		Course Outcomes				
001	A 1 '1'		Bloom's Level			
COI	Abili mater	ty to define, understand and explain the structure and properties of engineering rials.	Remember/ Understand			
CO2	Abili indus	ty to comprehend the criterion for selection of materials for chemical process	Apply			
CO3	Ability to gain an insight into the properties nonferrous metals and its alloys for application in chemical process industries		Analyse			
CO4	Apply the knowledge about various materials used in chemical process industries		Evaluate			
CO5	Construct and to select materials for high temperature and Sour service		Create			
Text	Books					
1. Jar	1. James A. Lee, — Materials of Construction for Chemical Process Industries, Mc Graw Hill, 1950.					

2. V.Raghavan, "Materials Science and Engineering: A first course", V Edition, Prentice Hall of India, 2004.

Reference Books

- 1. Frank Rumford, —Chemical Engineering Materials, Nabu Press, 2013.
- 2. Khurmi R.S., Strength of Materials, Third Edition Reprint, S.Chand and Company Ltd, 2015.
- 3. Agrawal B.K., -Introduction to Engineering Materials, Tata McGraw Hill, 1988.

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 1. What are the factors which affect the selection of materials for engineering purposes?
- 2. Explain the criteria of selecting the materials in process industries.
- 3. Explain about creep in materials?
- 4. What is the preliminary information required to specify materials?
- 5. Describe briefly failure analysis method

Course Outcome 2 (CO2):

- 1. What are the different compositions of carbon steel?
- 2. Differentiate LD process and the open herath process in detail.
- 3. Examine the different types of stainless steel
- 4. Explain the Bessemer process briefly.
- 5. Discuss briefly about the crucible process.

Course Outcome 3 (CO3):

- 1. What are the different properties of Aluminium?
- 2. Explain the concept of extraction of Lead from earth's core.
- 3. What are the different copper alloys are there?
- 4. Explain the bayer process for the production of Aluminium
- 5. Describe the pyrometallurgical treatment of zinc process.

Course Outcome 4 (CO4):

- 1. What are the major groups of ceramics.
- 2. Explain the concept of processing of plastics
- 3. What are the different characteristics of rubber?
- 4. What is the functional classification of ceramics?
- 5. Describe the different structure of silicones.

Course Outcome 5 (CO5):

- 1. What are the different properties of metallic glasses?
- 2. Explain the concept of biopolymers and unique properties of bio polymers.
- 3. What are the different applications of biomaterials?
- 4. What are metallic oxides and its properties
- 5. Describe sour service methods

Course Outcomes	Skill	PO	Blooms	Assessing tools
Ability to define, understand and explain the structure and properties of engineering materials.	Remember/Understand		L1/L2	Assignment/Exam/ Quiz/ Seminar
Ability to comprehend the criterion for selection of materials for chemical process industries	Apply		L3	Assignment/ Exam/ Quiz
Ability to gain an insight into the properties nonferrous metals and its alloys for application in chemical process industries	Analyse		L4	Assignment/ Exam/ Quiz
Apply the knowledge about various materials used in chemical process industries	Investigation		L5	Exam/ Quiz/Assignment/Se minar
Construct and to select materials for high temperature and Sour service	Design		L6	Assignment/Exam/S eminar

Course Cod	Course CodeCourse NameLTH		Р	С		
19UGM33	2 Biology for Engineering Applications (Common to Agri, Civil, Chem, ECE, EEE & IT)	2	0	0	P/F	
OBJECTIVES:						
 To provide a basic understanding of biological mechanisms of living organisms and the human biology from the perspective of engineers. To encourage engineering students to think about solving biological problems with engineering principles and tools. 						
Module – 1	INTRODUCTION AND CLASSIFICATION			5		
Introduction Bird flying a Unicellular o Animals, Hun aquatic or ter	Introduction to Biology – Comparison of Biology and Engineering – Eye and Camera – Bird flying and Aircraft – Brownian motion and Thermodynamics – Classification – Unicellular or multicellular – Unicellular: Bacteria, Protozoa, Yeast – Multi Cellular: Animals, Humans, Plants, fungi etc. – Ultra structure: prokaryotes or eukaryotes – Habitat:					
Module – 2	DIGESTIVE & RESPIRATORY SYSTEMS – ENZYMI	E		6		
Study of dige Enzyme – Me management processing in	Study of digestive – Respiratory systems and their functions –.Enzyme – Classification of Enzyme – Mechanism of Enzyme activity – Enzymes for Industrial Applications: Waste management – Food				of e	
Module – 3	GENETICS AND BIO MOLECULES (Basics only)			7		
Basics of Ge decoding Gen disorders – C Biological A Genetic Engin	Basics of Genes – DNA structure – Genes and hereditary – Genetic Code – Coding and decoding Genetic information – Gene Mapping – Gene Interactions – Mutations – Genetic disorders – Gene therapy – Biomolecules: Carbohydrates, lipids, nucleic acids, proteins. Biological Applications in Engineering: Genetic Algorithm – Computer Application in Genetic Engineering – Genetic Programming –					
Module – 4	NERVOUS SYSTEM AND CELL SIGNALING			7		
Module – 4NERVOUS SYSTEM AND CELL SIGNALING7Central Nervous System: Brain and Spinal Cord – Peripheral Nervous System – SensoryDivision – Motor Division – Neurons – sensory, motor, and interneurons – Signals –Transfer of Information – Bio Signals – Electrocardiography (ECG) –Electroencephalography (EEG) – Electromyography (EMG) – Electrooculography (EOG) –X-ray – CT Scan – MRI scan – Biological Applications in Engineering –Neurons and Neural Network.						
Module – 5	BIOLOGY AND ITS INDUSTRIAL APPLICATION			5		
Bioreactors – Biopharming – Recombinant vaccines – Cloning – Drug discovery – Bioremediation – Biofertilizer – Biocontrol – Biofilters – Biosensors – Biopolymers – Bioenergy – Biomaterials – Biochips.						
	ΤΟΤΑΙ	L:3	0 PI	ERI	ODS	
COURSE OUTCOMES: At the end of the course the student will be able to:						
CO1 Explain bioche	n the fundamentals of living things, their classification, cell re and mical constituents.		Un	ders	tand	

CO2	Apply the concept of plant, animal and microbial systems and growth in real life	Apply
	situations	
CO3	Analyze biological engineering principles and procedures needed to solve societal	Analysis
	issues.	
TEX	T BOOKS	
1.	R.C.Dubey, "A Text book of Biotechnology", S. Chand Higher Acaden	nic
	Publications, 2013.	
2.	R. Khandpur, "Biomedical instrumentation - Technology and application McGraw Hill Professional, 2004.	ons",
REF	ERENCE BOOKS	
1.	Arthur T. Johnson, "Biology for Engineers", CRC Press, Taylor and Fra	ancis, 2nd
	Edition, 2019.	
2.	Cecie Starr, Ralph Taggart, Christine Evers and Lisa Starr, "Cell Biolog	gy and
	Genetics (Biology: The unity and diversity of life Volume I)", Cengage	Learning,
	12th Edition, 2008.	-
3.	Gerard J. Tortora and Bryan H.Derrickson, "Principles of Anatomy and	
	Physiology",15th Edition,Wiley publications, 2016.	

NUMERICAL METHODS

(COMMON TO CIVIL, CHEMICAL AND BIO. TECH)

3 1 0 4

Р

С

Т

OBJECTIVES :

- To acquaint the student with the roots of nonlinear (algebraic or transcendental) equations, solutions of large system of linear equations and Eigen value problem of a matrix can be obtained numerically where analytical methods fail to give solution.
- To familiarize the student with the methods discussed on interpolation which will be useful in constructing approximate polynomial to represent the data and to find the intermediate values, when huge amounts of experimental data are involved.
- To make the student acquire sound knowledge in applications of numerical methods in various fields, solving practical technical problems using scientific and mathematical tools when available in Engineering.

UNIT I SOLUTION OF ALGEBRAIC, TRANCENDENTAL EQUATIONS AND EIGENVALUE PROBLEMS

Iteration method – Newton-Raphson method – Gauss Elimination method – Pivoting – Gauss Jordan methods –iterative methods : Gauss Jacobi method ,Gauss Seidel method – Eigen values of a matrix by Power method – Jacobi's method for a real symmetric matrix.

UNIT IIINTERPOLATION AND APPROXIMATION9+3

Lagrange's interpolation – Newton's divided difference interpolation – Newton's forward and backward difference interpolation –cubic spline.

UNIT III NUMERICAL DIFFERENTIATION AND NUMERICAL 9 + 3

Derivatives from difference tables – Divided differences and finite differences – Numerical integration by Trapezoidal and Simpson's 1/3 and 3/8 rules – Romberg's method – Two point and Three point Gaussian quadrature formulae - Double integrals using Trapezoidal and Simpson's rules.

LINIT IV	NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL	0 ± 3
	EQUATIONS	9+5

Single step methods: Taylor series method – Euler method for first order equation – Fourth order Runge – Kutta method for solving first and second order equations – Multistep methods: Milne's and Adam's predictor and corrector methods.

UNIT V EQUATIONS

9+3

19UMA423

9+3

Finite difference solution of second order ordinary differential equation – Finite difference solution of one dimensional heat equation by explicit and implicit methods – One dimensional wave equation and two dimensional Laplace and Poisson equations.

TOTAL : 45 (L) + 15 (T) = 60 Periods

COURSE OUTCOMES:

After the successful completion of this course, the student will be able to

- Apply various techniques to solve linear, nonlinear equations and Eigen value problems of a Matrix by Numerically.(CO1) AP K3
- Apply Interpolation technique for equal and unequal intervals to find new data points within the range of known data points. (CO2) AP K3
- Apply the Numerical techniques of Differentiation and Integration for Engineering Problems.(CO3) AP K3
- Apply the knowledge of numerical techniques and methods for solving first and second order Ordinary Differential Equation.(CO4) AP K3
- Apply the knowledge of Partial Differential Equation with initial and boundary conditions by using certain techniques with engineering applications.(CO5). AP K3
- Understand the knowledge of parabolic, elliptic, eigenvalues and ordinary differential equation. (CO6) U-K2

TEXT BOOKS:

- 1. SASTRY S.S., "Introductory methods of Numerical Analysis", Prentice Hall of India, New Delhi, 4th Edition, (2008).
- 2. SRIMANTAPAL "Numerical methods Principles Analysis and Algorithm", Edition 2009, Oxford press, New Delhi.
- IYENGAR S.R.K , JAIN R.K. , MAHIDEN KUMAR JAIN "Numerical Methods for Scientific and Engineering Computations" New Age International Publishers 7th Edition 2019.

REFERENCE BOOKS:

- 1. KANDASAMY.P, THILAGAVATHY.K and GUNAVATHY.K, "Numerical Methods", S.Chand Co. Ltd., New Delhi, (2003).
- 2. GERALD C.F. and WHEATELEY P.O., "Applied Numerical Analysis", Pearson Education, New Delhi, 6th Edition, (2006).
- 3. GREWAL B.S. and GREWAL J.S., "Numerical methods in Engineering and Science", Khanna Publishers, New Delhi, 9th Edition, (2007).
- 4. CHAPRA S. C and CANALE R. P. "Numerical Methods for Engineers", Tata McGraw-Hill, New Delhi, 5th Edition, (2007).
- 5. SANKAR RAO.K, "Numerical Methods for scientists and engineers", Prentice Hall of India, New Delhi, 3rd Edition, (2007).

СО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO. 1	3			1								1	2	
CO. 2	3			1								1	2	
CO. 3	3			1								1	2	
CO. 4	3			1								1	2	
CO. 5	3			1								1	2	
CO. 6	3			1								1	2	

1011/211/02	CHEMICAL ENCINEEDING THEDMODYNAMICS	L	Т	Р	С
19001402	CHEMICAL ENGINEERING THERMODYNAMICS	2	1	0	3

Objective:

- To make the students tounderstand the laws of thermodynamics, PVT behaviour of fluids and thermodynamic property relations
- To enable him to handle important engineering tasks, to the treatment of properties of solution, phase equilibria, and Chemical reaction equilibria.

Prerequisite

19UCH303 -Heat Power Engineering

Module	Topics	L			
Ι	Laws of Thermodynamics	9			
Α	Laws of Thermodynamics: Basic concepts; Zeroth law; Temperature scales experiment, internal energy, applications to cyclic process, non-flow and flow pro	; first law- Joule's cesses;			
В	Second Law: Statements of the second law of thermodynamics - heat engines, Carnot cycle and theorem, Thermodynamic temperature scale, Entropy and its calculations; Third Law of thermodynamics.				
II	P-V-T Behaviour and Thermodynamic Properties of Pure Fluids	9			
Α	P-V-T Behaviour of Pure fluids: Mathematical representation of PVT behaviour; Process involving ideal gas; Equation of state for Ideal gas and real gas; compressibility Charts ; Principle of corresponding states.				
В	Thermodynamic Properties of Pure Fluids : Thermodynamic properties; Basic energy relations; thermodynamic property relations – Maxwell relations – partial derivatives and Jacobian method;				
III	Properties of Solutions	9			
Α	Partial molar properties: Partial molar properties-Determination; chemical po activity coefficients; Gibbs-Duhem equation.	tential; fugacity and			
В	Property Changes of Mixing: Property Changes of Mixing-Free Energy Chang Enthalpy Change and Entropy Change; Excess Properties-Excess Gibbs Free Ene	es ,Volume Change , rgy			
IV	Phase Equilibria and its Correlations	9			
А	Phase Equilibria: Phase equilibrium and stability; criteria for equilibrium between phases in single and multi-component non-reacting systems; vapour-liquid equilibrium of binary ideal and non-ideal solutions; azeotropes;				
В	Correlations and Prediction: VLE at low pressure Activity coefficient models, VLE at high pressure and multi component system; Thermodynamic consistency test for VLE data.				
V	Chemical Reaction Equilibria	9			
Α	Reaction Constant :Criteria of Chemical Reaction Equilibrium; Equilibrium C between Standard free energy change, Effect of Temperature on equilibrium evaluation.	constant- relationship n constant, and its			

Homogeneous chemical reactions: homogeneous chemical reactions -thermodynamic analysis and					
В		prediction of equilibrium compositions, Phase Rule for Reacting System			
		Total Hours	45		
		Course Outcomes			
			Bloom's	s Level	
On suc	ressfu	completion of this course the student should			
on suc					
CO1	Abilit	y to understand the fundamental terminologies of thermodynamic laws,	Ren	nember/	
	Energ	ies, Behaviour of pure fluids & solution and equilibriums.	Unc	lerstand	
CO2	Abilit	y to solve the internal energy, heat engine, enthalpy, entropy problems and also	A	Apply	
	apply	the partial molar properties, and Equilibrium to describe VLE.			
CO3	Abilit	y to analysis the flow and non-flow process, thermodynamic properties by using	A	nalyse	
	of par	tial differentiation and Jacobians method and stability criterion for phase and			
CO4	Abilit	v to compare the various process involved in ideal and non-idealsolutions and	Ex	valuate	
004	also e	evaluate the thermodynamic properties of solution and various equilibrium for		aruate	
	homo	geneous and heterogeneous system.			
CO5 Ability to write the mass, energy and entropy balances for flow process and				reate	
equilibrium stability condition and also develop the model of partial molar properties					
<u> </u>	for solution, and heat engine cycles.				
CO6	Abilit	y to conduct experiments using modern tools such as MAT lab and Aspen plus	Mod	ern tools	
TEXT	BOO	KS:	T1	16	
1.	Smith McGr	, J.M., Van Ness, H.C and Abbot M.M. Introduction to Chemical Engineering	g I nermoo	iynamics ",	
2	Naray	aw Thin Fubishers, Vicention, 2005 anan, K.V. A. Textbook of Chemical Engineering Thermodynamics Prentice Hall	India 200	04	
REFE	RENC	ES:	inaia, 200		
1.	Kyle,	B.G., "Chemical and Process Thermodynamics III Edition", Prentice Hall of Indi	a Pvt. Ltd.	, 1999.	
2.	Elliot	z J.R., Lira, C.T., "Introductory chemical engineering thermodynamics", Prentice	Hall, 1998	3	
3.	Rao, Y	Y.V.C., "Chemical Engineering Thermodynamics" Universities Press, 2005			
4.	Prade	epahuja," Chemical Engineering Thermodynamics", PHI Learning Ltd (2009).			
5.	Gopin	athHalder," Introduction to Chemical Engineering Thermodynamics", PHI Learn	ing Ltd (2	009).	
		Course Level Assessment Questions			
Cours	e Outc	ome 1 (CO1):Remember/ Understand	Bloom's	Module	
			level		
1. State	e Zerot	h law of thermodynamics.	(R)	1	
2. State	e Claus	ius inequality.	(R)	1	
3. State	e Carno	pt's theorem.	(R)	1	
4. Wha	it do yo	ou understand by the term 'Internal Energy'?	(R)	1	
5. Why	7 1s the	specific heat at constant pressure Cp always greater than that at constant	(U)	1	
Cours	e Oute	ome 2 (CO2): Apply			
Jours	c out				
1.Heat	is tran	sferred to 10 kg of air which is initially at 100kPa and 300 K until its	(AP)	1	
temper	ature r	eaches 600 K. Determine the change in internal energy, the change in			

enthalpy, the heat supplied, and the work done in the following processes.		
(a) Constant volume process and (b) Constant pressure process.		
Assume that air is an ideal gas for which the P-V-T relation is $PV=nRT$. Take $C_P=29.099$		
kJ/KmolK, Cv=20.785 kJ/Kmol K and molecular weight of air=29.		
2.Calculate the entropy change when 1 kmole of an ideal gas at 300 K and $10*10^5$ N/m ²	(AP)	1
expands through a throttle to a pressure of $1*10^5$ N/m ² both pressure being maintained		
constant during the process by suitable means.		
3.Calculate ΔU and ΔH in KJ for 1 mol of water, as it is vapourised at the constant	(AP)	1
temperature of 373 K and constant pressure of 101.3 Kpa. The specific volume of liquid and		
vapour at these condition are 1.04*10 ⁻³ and 1.675 m ³ /kmol respectively 1030 KJ heat is		
added to water for this change?		
4.Liquid CO ₂ at 233 K has a pressure of $1.005*10^{3}$ Kpa and a specific volume of $0.9*10^{-3}$	(AP)	1
m^3/kg . Assume that CO ₂ is a saturated liquid at these conditions and its enthalpy is zero.		
Latent heat of vapourisation of CO_2 is 320.5 KJ/kg and the specific volume of saturated		
vapour is 38.2×10^{-5} m ³ /kg. Calculate the internal energy of saturated liquid and enthalpy of		
saturated vapour?		
5. An ideal gas is undergoing a series of three operations: the gas heated at constant volume	(AP)	2
from 300 K and 1 bar to a pressure of 2 bar. It is expanded in a reversible adiabatic process		
to a pressure of 1 bar. It is cooled at constant pressure of 1 bar to 300 K. Determine the neat and work offset for each step. Assume $C = 20.2$ K. Ukmel K		
and work effect for each step. Assume $C_P = 29.3 \text{ KJ/kmol K}$.		
Course Outcome 5 (CO5): Anaryse		
Derive the first law of thermodynamics for flow processes	(AN)	1
1. Prove that a Carnot engine has the maximum efficiency and that the efficiency is	(AN)	1
independent of the working fluid	` '	
2. Derive the thermal efficiency for kelvin Planck statement and Clausius statement	(AN)	1
3. Prove the equivalence of the Kelvin-Planck and Clausius statements of the second law of	(AN)	1
thermodynamics		
4. Derive the following equation of state for real gases	(AN)	2
(i)Redlich-Kwong soave equation (ii)Peng-Robinson equation (iii)Virial Equations(iv)		
Benedict webbrubin equation		
5. Derive Mawell's relations using the method of partial derivatives	(AN)	2
<u>Course Outcome 4 (CO4):Evaluate</u>		
1. Compare and Prove that a Carnot engine has the maximum efficiency then other heat	(F)	1
engine and that the efficiency is independent of the working fluid	(L)	1
2 Compare the thermal efficiency for kelvin Planck statement and Clausius statement	(E)	1
3 Judge that the equivalence of the Kelvin-Planck and Clausius statements of the second	(E)	1
law of thermodynamics.	(1)	•
4. Compare the Entropy changes in isothermal mixing of ideal gas and Adabatic mixing of	(E)	1
ideal gas	、 <i>,</i>	
5. Compare with a neat diagram, the PV and PT behaviour of a pure substance.	(E)	2
Course Outcome 5 (CO5):Create	, , ,	
1. Write the Mass Balance and Energy Balance equation For flow process open system.	(C)	1
2. Combine the heat engine and heat pump, and predict that any device violate it statement it	(C)	1
also violate its other statement		<u>^</u>
5. Write the Mathematical representation of PV1 behaviour for pure fluids by using MAT	(C)	2
lau		

4. Draw the mnemonic diagram of Maxwell equation by using aspen plus.	(C)	2
5. Develop the model for explain the partial molar properties	(C)	3

Course Outcomes	Skill	PO	Blooms	Assessing tools
Ability to understand the fundamental terminologies of thermodynamic laws, Energies, Behaviours of pure fluids & solution and equilibriums.	Remember/Understand	-	L1/	Assignment/Exam/ Quiz/ Seminar
Ability to solve the internal energy, heat engine, enthalpy, entropy problems and also apply the partial molar properties, and Equilibrium to describe VLE.	Apply		L3 L2	Assignment/ Exam/ Quiz
Ability to analysis the flow and non-flow process, thermodynamic properties by using of partial differentiation and Jacobians method and stability criterion for phase and chemical reaction equilibrium	Analyse		L4	Assignment/ Exam/ Quiz
Ability to compare the various process involved in ideal and non-ideal solutions and also evaluate the thermodynamics properties of solution and various equilibrium for homogeneous and heterogeneous system	Investigation		L5	Exam/ Quiz/ Assignment/Seminar
Ability to write the mass, energy and entropy balances for flow process and equilibrium stability condition and also develops the model of partial molar properties for solution, and heat engine cycles.	Design		L6	Assignment/Exam/ Seminar
Ability to conduct experiments using modern tools such as MAT lab and Aspen plus	Modern Tools			Lab/Seminar

19UCH403	HEAT TRANSFER L	Т	Р	С			
	3	0	3	4.5			
AIM							
To study th	e basics and applications of conduction, convection and radiation heat transfe	r in the	areas pert	aining to			
chemical en	ngineering.						
OBJECTI	VES						
To enable t	he students to learn heat transfer by conduction, convection and radiation and l	neat tran	sfer equip	ments			
like evapor	ator and heat exchanger.						
MODULE	TOPICS			L Hrs			
	CONDUCTION						
-	Basic concepts – conduction - convection and radiation – Laws – General e	quation	of heat	0			
1	conduction – Heat transfer composite walls - composite cylinders and comp	osite sp	heres –	9			
	Critical thickness of insulation- Extended surfaces – types and applications	Critical thickness of insulation- Extended surfaces – types and applications of fins – Fin					
	efficiency and effectiveness – Fin performance.						
		1. 1					
TT	Laminar flow over a flat plate – Turbulent flow over a flat plate – Flow over	r cylind	ers –	0			
11	Internal flow through pipes – annular spaces –Natural convection in vertica	l and ho	rizontal	9			
	surfaces- Condensation and Boiling – Filmwise and dropwise condensation	– F11m					
	DADIATION						
	RADIATION						
III	Concept and nature of thermal radiations - Concept of Black and grey bodies; Steran Reltzmann Kirchhoff's Dianak's and Wien laws Padiation between surfaces						
	configuration factor: radiation shield	cen su	laces –				
	HEAT EXCHANCERS						
	Types of best exchangers: IMTD: use of correction factor charts: Fouling factors: surface						
IV	area calculations for double nine and shell and tube heat exchangers: effectiveness and						
area calculations for double pipe and shell and tube heat exchangers; effectiveness and number of transfer units. Special type of Heat Exchangers							
	EVAPORATORS						
	Introduction – Types of Evaporators – Design of Evaporators – Vapor Recompression						
V	methods single effect evaporator- Multiple Effect Evaporators – Vapor Recompression						
	methods	methods					
	Tota	l Lectur	e Hours	45			
	Course Outcomes		Bloom's	Level			
CO1	Ability to understand the concept of conduction, convection, radiation and prin	nciple	Rememb	er/Unde			
	of heat exchangers.		rsta	nd			
CO2	Ability to apply the equation for conduction, convection, radiation in heat excl	nange	Ap	plv			
~~~	equipment.		<b>r</b> )	[-]			
CO3	Ability to analyze the use of heat exchange equipment for particular industry b	у	Ana	lyse			
<u> </u>	using the laws of heat transfer.						
C04	Ability to select the appropriate evaporators with application of laws.		Eval	uate			
05	Ability to Design the heat exchange equipment and evaporators.		Cre	ate			
CO6	Ability to solve the heat transfer coefficient by using softwares		Moder	n tools			
Laborator	y						
1. Per	formance studies on Cooling Tower						
2. Bat	ch drying kinetics using Tray Dryer		30 1	Trs			
3. Hea	t transfer in Open Pan Evaporator		501				
4. Stef	an-Boltzmann Experiment						
5. Hea	t Transfer through Packed Bed						

6. Heat Transfer in a Double Pipe Heat Exchanger				
7. Heat Transfer in Shell and Tube Heat Exchanger				
8. Heat Transfer by Natural Convection				
9. Heat Transfer by Forced Convection				
10. Heat Transfer in a Condenser				
11. Heat Transfer in Helical Coils				
12. Heat Transfer in Agitated Vessels				
13.Heat Transfer in a Bare and Finned Tube Heat Exchanger				
Course Outcomes				
Determine Stefan Boltzmann constant at different temperatures				
Assess the heat transfer coefficient for natural and forced convection systems, dou	uble pipe heat			
<b>CO2</b> exchanger / shell and tube heat exchanger and condensers				
<b>CO3</b> Develop temperature profile in unsteady state heat transfer system				
<b>CO4</b> Evaluate the convective and radioactive heat transfer coefficients using radiation	experiment			
CO5 Appraise the fin efficiency and estimate the steam economy in an evaporator				
Taxt Baaks				

#### Text Books

1.McCabe W.L., Smith J.C. and Harriot P.," Unit Operations in Chemical Engineering", 7th Edition, McGraw Hill International Edition, New York, 2006

2. Yunus A.Cengel., "Heat Transfer: A Practical Approach", 2nd Edition, McGraw Hill, 2003.

#### **Reference Books**

1. Dutta Binay K., "Heat Transfer Principles and Application", Prentice Hall of India, New Delhi, 2001. 2.Coulson J.M. and Richardson J.F., "Chemical Engineering", Volume I, 4th Edition, Asian Books Pvt.Ltd., 1998.

#### **Course Level Assessment Ouestions**

#### **Course Outcome 1(CO1):**

1. Define Conduction

2. Illustrate the requirements of Insulating materials.

3. Derive the one dimensional steady state conduction through One Plane Wall and Composite wall.

4. A 50 mm diameter pipe of Cross sectional area and with walls 3mm thick covered with two concentric layers of lagging, innerlayer having thickness 25mm and k=0.08W/m.K and outer layer having thickness of 40mm and k=0.04W/m.K. Estimate the rate of heat loss per meter length of pipe, if the temperature inside the pipe 550K and outside surface temperature is 330K.Thermal conductivity for pipe is 45W/m.K

#### Course Outcome 2 (CO2):

1. State Newton's Law of Cooling.

2. List out the some Dimensional numbers used in Heat Transfer.

3. Derive the overall Heat Transfer Coefficient when the metal wall resistence is very small in comparison with the resistence of fluid films.

4. Determine the inside heat transfer coefficient for a oil flowing at a rate of 0.5kg/sec through a tube of 19mm inside diameter is heated from 311 to 327K by condensing steam at 373K.

Course Outcome 3 (CO3):

1. State Stefan Boltzman Law in radiation.

2. Define Kirchoffs law and Plancks law.

3. Explain the concept of Black body

4. A 50mm i.d iron pipe at 423K passing through a room in which surrounding are at temperature 300K. If the emissivity of the pipe metal is 0.8, what is the next interchange of radiation energy per meter length of pipe? The outside dia of pipe is 60mm.

#### **Course Outcome 4 (CO4):**

1. Compare between Single Pass and Multi pass shell and tube heat exchanger.

- 2. List the equipments of heat Exchanger.
- 3. Explain in detail about Shell and Tube heat exchanger.

4. It is require to cool 250kg/hr of hot liquid with inlet temperature of 399K using a parallel flow arrangement. 1000kg/hr cooling water is available for cooling purpose at temperature of 283K.Calculate the outlet temperature of hot liquid and water at effectiveness of heat exchanger, if the U is 1160W/m²K and Heat transfer surface is 0.25m²

#### **Course Outcome 5 (CO5):**

- 1. List out the effects of properties of solution on Evaporation operation.
- 2. State Capacity and Economy of Evaporators.
- 3. Explain with a neat sketch about Horizontal tube Evaporator.

4. An Evaporator operating at atmosphere pressure 101.325kPa is fed at the rate of 10000kg/hr of weak liquor containing 4% Caustic soda. Think Liquor leaving the evaporator contains 25% caustic soda. Find the Capacity of Evaporator.

Course Outcomes	Skill	PO	Blooms	Assessing tools
Ability to understand the concept of	Remember/		L1/L2	Assignment/Exam/
conduction, convection, radiation and principle	Understand			Quiz/ Seminar
of heat exchangers.				
Ability to apply the equation for conduction,	Apply	PO1	L3	Assignment/ Exam/
convection, radiation in heat exchange				Quiz
equipment.				
Ability to analyze the use of heat exchange	Analyse	PO2	L4	Assignment/ Exam/
equipment for particular industry by using the				Quiz
laws of heat transfer.				
Ability to select the appropriate evaporators	Investigation	PO3	L5	Exam/ Quiz/
with application of laws.				Assignment/Seminar
Ability to Design the heat exchange equipment	Design	PO4	L6	Assignment/Exam/
and evaporators.				Seminar
Ability to solve the heat transfer coefficient by	Modern Tools	PO5		Lab/Seminar
using softwares				

1011/011/0/	MECHANICAL OPERATIONS	L	Т	Р	С
19001404		3	0	3	4.5

#### AIM

#### To study the behaviour of solid particles as per the requirement of Chemical Engineering

**OBJECTIVES** 

The students will be in a position to understand that the industrial processes contain a coordinated series of separation operations and they will be in a position to decide the best process needed for a particular process industry.

MODULE	TOPICS		L Hrs	
I	<b>INTRODUCTION TO PARTICULATE SOLIDS</b> Particle Shape, Size, Mixed Particle Sizes and Size Analysis – Cumulati Differential Analysis –Various Mean Diameters – Screen Analysis Stand General characteristics of solids, their behaviour under different external agglomeration, techniques for size analysis.	ve and dard Screens- l forces,	9	
п	SIZE REDUCTION Size Reduction – Principles of Comminution - Energy and Power Requi Comminution -Mechanical Efficiency-Laws of Crushing-Size Reduction Crushers- Grinders-Cutting Machines – Open and Closed Circuit Operat	rements in 1 Equipments – tion.	9	
III	<b>MECHANICAL SEPARATIONS</b> Screening and Screening equipment, effectiveness of screens, gravity settling, sedimentation, thickening, centrifugal separation, impingement methods, industrial dust removing equipment with special reference to electrostatic and magnetic separators, heavy media separations, floatation.			
IV	<b>FILTRATION</b> Filtration Equipment – Filter Presses – Leaf Filter – Rotary Continuous Filters – Filter Media – Filter Aids – Principles of Cake Filtration – Specific Cake Resistance - Filter Medium Resistance. Constant Pressure Filtration– Principles of Centrifugal Filtration- Ultra Filtration, Membrane Filtration, Bio Filtration.			
V	AGITATION AND CONVEYING OF SOLIDS Principles of Agitation – Agitation vessel – Impellers – Flow Pattern in Agitated Vessel - Power Consumption in Agitated vessel- Calculation of power. Conveyors,-Pneumatic conveyor Belt conveyor Screw Conveyor			
		<b>Total Hours</b>	45	
	Course Outcomes	<b>Bloom's Level</b>		
CO1	Ability to understand the characteristics of solids and principle of size reduction.	Remember/Unde	erstand	
CO2	Ability to apply the laws and power used for unit operations.	Apply		
CO3	Ability to analyse various equipments for separation and filtration.	Analyse		
CO4	Ability to investigate and select equipments for agitation and	Evaluate		
	transportation of solids.			
CO5	Ability to solve the problems created by filtration, agitation and size Create reduction equipments.			
CO6	Ability to design the unit operation equipment as per the requirement	Modern Too	ols	
Laboratory 1.Study of c 2.Study of c 3.Study of c	rushing strength of solid materials using jaw crusher rushing strength of solid materials using crushing rolls rushing strength of solid materials using ball mill	30 Hrs		

4. Study of characterization of filtration using to Filter Press.						
5. Study of chara	cterization of solid materials using leaf Filter.					
6. Study of separ	ation of fine particles using cyclone separator.					
7. Study of separ	7. Study of separation of fine particles using sedimentation					
8. Study of separ	ation of fine particles using Air Elutriator.					
9. Study of separ	ation of solid particles using Drop Weight crusher.					
10. Study of sepa	ration of fine particles using screens and determination of					
effectiveness of f	actor.					
	Course Outcomes					
CO1	Estimate crushing characteristics, power requirements and constant	ts of crushing laws using				
	Jaw Crusher, Roll Crusher & Ballmill.	6 6				
CO2	Analyze the average particle size and separation of fine particles using Sieve analysis.					
	Cyclone separator and Air Elutriator.					
CO3	Estimate specific cake and filter medium resistance using Plate and Frame Filter and Leaf					
	filter press.					
CO4	Determine the separation of fine particles using Drop weight Crusher.					
CO5	Calculate the minimum area required by using Batch Sedimentation.					
Text Books	· · · · ·					
1. Mc Cabe, Smi	th and Harriott, Unit Operations of Chemical Engineering, McGraw	Hill, New York, 2002.				
<b>Reference Books</b>	5					
1. C. L. Narayana	an & Bhattacharya Mechanical Operation for chemical Engineering,	Khanna Publishers, 2003.				
2. JM Coulson &	JF Richardson, Chemical Engineering, Volume 2 (Particle Technologi	bgy & Separation				
Processes), Butte	rworth – Heinemann Publishing Ltd., 4th Edition, 1996					
Course Level Assessment Questions						
Course Outcome 1 (CO1):						
1. How increase in surface area can be achieved						
2. Define Sphericity and Agglomeration.						
3. Explain the te	chniques for size analysis.					
4. Where screen	analysis applied to a crushed quartz, the density of the particle is 0.00	0265g/mm ³ and shape				
factor 2. Sphericity will be 0.511.						
5. For a material between 4 mesh and 200 mesh the particle size. Calculate specific surface area.surface mean						
diameter,number	of particles, average particle size, and volume mean diameter					
Course Outcom	e 2 (CO2):					
1. Explain the va	rious laws of Size reduction.					
2. Diameter of ba	2. Diameter of ball mill 500mm. Diameter of ball 40mm. Operating speed is 50% of the critical speed of ball					
mill. Calculate th	mill. Calculate the operating speed of Ball mill.					
3. What will be the power required to crush 150 tonns/hr of limestone if 50% of feed passes 50mm screen and						
80% of the product at 3.145mm out screen. Work index 12.74						
4. Find the critica	l speed of ball ill by using the data. Diameter of ball mill 450mm.Di	ameter of ball 25mm				
<b>Course Outcom</b>	e 3 (CO3):					
1. Derive the material balance over the screen and find out the effectiveness factor.						
2. Differentiate Ideal Screen and Actual screen.						
3. A screen with aperature of 6 mesh BSS is treating a feed with 66% of +6 mesh screen and producing an						
oversize fraction containing 89% of +6 mesh particles. If the undersize						
fraction contains 2% of +6 mesh particles, Calculate the Effectiveness of screen.						
4. With a neat sketch explain the working principle of dust removing equipment.						

- Course Outcome 4 (CO4):
  1. Describe the theory of filtration with reference to compressible and uncompressible cakes
  2. How scraper effectively used in rotary vacuum filters

3. Explain the centrifugation operation and different centrifuges in chemical industry.

4. Discuss the special filtration operations in special reference to membrane and ultra filtration.

#### Course Outcome 5 (CO5):

1. Differentiate between mixing and agitation.

2. Derive the power consumption in Impeller based on Reynolds number.

A flat blade turbine with 6 blades is installed centrally in vertical tank. A tank is 1.5 m in dia. The turbine is

0.5m in diameter and positioned from 0.5m from the bottom of tank. The tank is filled to a depth of 1.5m with rubber latex compound at 65C having a viscosity of 1200poise and density 1129kg/m3. The turbine operated at 95rpm. Calculate the power.

3. Explain with neat sketch about the working of Liquid-Liquid mixing equipment.

<b>Course Outcomes</b>	Skill	PO	Blooms	Assessing tools
Ability to understand the	Remember/Understand		L1/L2	Assignment/Exam/ Quiz/
characteristics of solids and principle				Seminar
of size reduction.				
Ability to apply the laws and power	Apply	PO1	L3	Assignment/ Exam/ Quiz
used for unit operations.				
Ability to analyse various	Analyse	PO2	L4	Assignment/ Exam/ Quiz
equipments for separation and				
filtration.				
Ability to investigate and select	Investigation	PO3	L5	Exam/ Quiz/
equipments for agitation and				Assignment/Seminar
transportation of solids.				
Ability to solve the problems created	Design	PO4	L6	Assignment/Exam/
by filtration, agitation and size				Seminar
reduction equipments.				
Ability to design the unit operation	Modern Tools	PO5		Lab/Seminar
equipment as per the requirement				

19UCH405CHEMICAL PROCESS INDUSTRIESLTPC3003

**Objective:** 

- Develop understanding of manufacturing process flow drawing for the manufacturing chemical processes, its applications and major engineering problems encountered in the process
- To gain Knowledge on various aspects of production engineering and understand the practical methods of production in a chemical factory.

Moo	Module Topics		L
I	A	<b>PAPER &amp; CARBOHYDRATES INDUSTRIES:</b> Paper & Pulp – Wood extracts, Manufacture of Pulp – Kraft Process, Conversion of pulp into paper. Manufacture of Raw Sugar, Refined Sugar- By-products of sugar Industry. Manufacture of Starch and starch derivatives - Dextrin	9
п	A	<b>INORGANIC CHEMICAL INDUSTRIES:</b> Methods of production of Sulfur & Sulphuric Acid, Caustic Soda, Sodium Chloride, Nitrogen and Phosphorous based products – Manufacture of Ammonia, Urea, Phosphate rock beneficiation, Phosphoric acid, and Potassium sulphate, Single triple super Phosphate, Bio fertilizers.	9
ш	A	<b>CEMENT &amp; OIL BASED INDUSTRIES:</b> Cement types – Properties of cements, Manufacture of Portland Cement, Overall factors in cement industries, Vegetable oil extraction methods. Refining of vegetable oils. Hydrogenation of Oils. Soaps and Detergents, Manufacture of white and yellow Glycerine	9
IV	A	<b>SURFACE COATINGS &amp; GLASS INDUSTRIES:</b> Constituents of paints & varnishes and their functions. Manufacture of pigments such as White lead, Zinc oxide and Titanium dioxide. Raw materials for Glass Industries. Production of glass by tank furnace - shaping and forming of articles from glass.	9
V	A	<b>PETROLEUM &amp; PETROCHEMICAL INDUSTRIES:</b> Petroleum Refinery products Petroleum Conversion processes – Pyrolysis and Cracking, Natural and synthetic fibres- Manufacture of Nylons, ABS, Viscose Rayon, Cellulose Acetate, PVC, NBR, SBR	9
		Total Hours	45
Course Outcomes		Bloom's Level	
<b>CO1</b> Ability to understand the importance of pulping and explain the manufacturing process of paper, sugar & starch.		Remember/ Understand	
<b>CO2</b> Ability to understand the manufacturing principles of inorganic chemicals and fertilizers		Apply	
<b>CO3</b> Design the production methodology of cement and oil industries and analyse the efficiency of the products.		Analyse	
CO4	<b>CO4</b> Ability to understand the manufacturing process of pigments and industrial glass manufacturing process.		Evaluate
CO5	5 Evaluate the manufacturing process of Petroleum and petrochemical industries with applications		Create
### **Text Books**

1. Gopala Rao M. and Marshall Sittig, — Dryden's Outlines of Chemical Technology^{II}, 3rd Edition, East-West Press, New Delhi, 2008.

2. Austin G.T., —Shreve's Chemical Process Industries, 5th Edition, McGraw-Hill International Book Company, Singapore, 2012.

3. Shukla, S.D. Pandey, G.N.: A Text Book of Chemical Technology, Vol. I, Vikas, New Delhi, (1994).

# **Reference Books**

1. Mark W.V. and Bhatia S.C., —Chemical Process Industries, Volume - I and II, 2nd Edition, CBS Publishers and Distributors, New Delhi, 2007.

2. Kent J.A., -Riggel's Hand Book of Industrial Chemistryl, Van Nostrant Reinhold, 1974.

3. Srikumar Koyikkal,"Chemical Process Technology and Simulation", PHI Learning Ltd(2013).

4. Stephenson, R.M. : Introduction to Chemical Process Industries, Van Nostrand, New Jersy, (1966).

### **Course Level Assessment Questions**

### Course Outcome 1 (CO1):

- 1. Describe the term unit operations & unit processes
- 2. Outline the manufacturing of chemical pulp by Kraft process with a neat diagram.
- 3. Explain the manufacturing process of paper from pulp with a neat diagram
- 4. Describe the manufacturing process of sugar from sugarcane with a neat process diagram.
- 5. List the various applications of starch and with a neat sketch describe the starch production.

### Course Outcome 2 (CO2):

- 1. Examine the production of sulphuric acid by contact or chamber process with suitable diagram.
- 2. Differentiate the manufacturing process of hydrochloric acid
- 3. Design a layout for the production of urea and its end applications.
- 4. Describe the manufacturing process of single & triple super phosphates.
- 5. Demonstrate the production of bio fertilizers.

### Course Outcome 3 (CO3):

- 1. Examine the production of Portland cement and its end applications with suitable diagram.
- 2. Differentiate the manufacturing process of yellow glycerine and white glycerine.
- 3. Design a layout for hydrogenation of oil and the production of various vegetable oils
- 4. Describe the manufacturing soaps and discuss the history of production of soaps in india.
- 5. Demonstrate the production of detergents with its chemical reactions

#### **Course Outcome 4 (CO4):**

- 1. Examine the production of paints and constituents of paints with a neat diagram
- 2. Differentiate the manufacturing process of Titanium oxide and Zinc oxide
- 3. Design a layout for the production of pigments and its end applications
- 4. Describe the process of shaping and forming in the production of glass.
- 5. Demonstrate the production of glass and ceramics and its uses.

# **Course Outcome 5 (CO5):**

- 1. Examine the petroleum conversion process and its chemical reactions
- 2. Differentiate the manufacturing process of NBR & SBR
- 3. Design a layout for the production of furfural and its end applications.
- 4. Describe the manufacturing process of Natural Rubbers and Synthetic rubbers.
- 5. Demonstrate the production of various petroleum refinery products

Course Outcomes	Skill	PO	Blooms	Assessing tools
Ability to understand the importance of	Remember/		L1/L2	Assignment/Exam/
pulping and explain the manufacturing process	Understand			Quiz/ Seminar
of paper, sugar & starch.				
Ability to understand the manufacturing	Apply		L3	Assignment/ Exam/
principles of inorganic chemicals and				Quiz
fertilizers				
Design the production methodology of cement	Analyse		L4	Assignment/ Exam/
and oil industries and analyse the efficiency of				Quiz
the products.				
Ability to understand the manufacturing	Investigation		L5	Exam/
process of pigments and industrial glass	_			Quiz/Assignment/Sem
manufacturing process.				inar
Evaluate the manufacturing process of	Design		L6	Assignment/Exam/Se
Petroleum and petrochemical industries with				minar
applications				

19UC	H406	MASS TRANSFER I	L	Т	Р	C				
1,00			2	1	0	3				
MOL	DULE	TOPICS			LH	Irs				
	A	<b>Introduction</b> Classification of mass transfer operations, Choice of separation Methods of conducting mass transfer operations, Diffusion and Fick's first and second law of diffusion.	n met its ty	thod, ypes,						
I	B       Molecular Diffusion in Fluids: Molecular and eddy diffusion, Ficks first law, Concept of N & J Flux, Steady state molecular diffusion in gases and liquids, Concept of fluids at rest and in laminar flow, Diffusivity measurement and prediction in fluids, Concept of effective diffusivity, multi-component diffusion, Diffusion in solids and its applications.         Mass Transfer Coefficients:									
п	A	Mass Transfer Coefficients: Eddy diffusion, Concept of mass transfer co-efficients, Mass to laminar and turbulent regions, F and k type mass transfer co Theories of mass transfer, Mass transfer in laminar and turbu Dimensionless groups in mass transfer and their significance, A Reynolds, Chilton- Colburn and Taylor – Prandtl analogy, Analog Momentum, Heat and Mass transfer.	transfe beffici llent f Analo y bety	er in ents, flow, gies: ween	9	)				
	В	<b>Interphase Mass Transfer:</b> Concept of equilibrium, Diffusion between phases, Individual ma coefficients, Relationship between individual and overall mass tr efficient, Co-current and counter-current operations, Equilib operating line concept.	ss trai cansfei prium	nsfer r co- and						
III	А	Humidification Basic concepts and terminologies, Adiabatic saturation process a of wet bulb temperature, Psychometric chart for Humidific dehumidification calculations, humidification operations	and th ation	eory and	9	)				
	В	Theory and design of cooling towers, dehumidifiers and humidifient enthalpy transfer unit concept, practical applications in chemical in	fiers undustr	ısing y.						
IV	DryingPrinciples, Equilibrium in drying, Classification of dryers, Types of moisture content, Drying rate curves, Mechanism of moisture movement in solid, Mechanism of batch drying, continuous drying, Drying rate and time calculations for drying.									
	В	Various drying equipments and their applications, Design Classification and selection of industrial dryers, Advance drying te	of d echniq	ryer, Jues.						
V	Α	Iassification and selection of industrial dryers, Advance drying techniques.rystallizationrinciples of crystallization, Equilibrium and yields, Saturation, Super uturation, Nucleation, Theory of homogeneous and heterogeneous ucleation, Law of crystal growth and growth coefficients, Caking of								

	crystals.	
	Classification of crystallizers, design of batch crystallizers and continuous	
B	crystallizers, Design calculations involving material and energy balances,	
	Application of crystallization process in industry.	
	Total Hours	45

# **Text Books**

1. Treybal, R. E., "Mass Transfer Operations", 3rd Edition, McGraw-Hill, 1981.

2. Geankoplis, C.J., "Transport Processes and Unit Operations", 4th Edition, Prentice HallInc., NewJersey, 2003.

3. Narayanan K.V. and Lakshmikutty, B "Mass Transfer – Theory and Applications", 1st Edition, CBS Publishers & Distributors Pvt Ltd, New Delhi, 2014.

# **Reference Books**

1. McCabe, W.L., Smith, J.C. and Harriot, P.,"Unit Operations in Chemical Engineering", 7th Edition., McGraw-Hill, 2005.

2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol. I and II, 4th Edition, Asian Books Pvt. Ltd., India, 1998.

**COURSE OUTCOMES** 

3. Seader J.D. and Henley E.J., "Separation Process Principles", 2nd Ed., John Wiley, 2006

The stu	dents have the									
CO1	Ability to define, understand and explain principles	the fundamen	ital cor	cepts of mass	s transfer					
CO2	Ability to apply mass transfer concepts a	nd solve comp	olex pro	oblems in mas	s transfer					
	operations									
CO3	Ability to analyze various technological	methods used	in mas	s transfer proc	esses					
CO4	Ability to investigate and select mass tran	nsfer equipme	nt for v	various industr	ial applications					
CO5	Ability to design mass transfer equipments used in chemical industries									
CO6	Ability to conduct experiments using modern tools: ANSYS - ICEM CFD, CFX, FLUENT.									
Course	<b>Course Outcomes</b> Mapping with Bloom's Taxonomy and Programme Outcomes									
	Course Outcome	Skill	PO	Bloom's Taxonomy	Assessment Tools to measure CO					
CO1	Ability to define, understand and explain the fundamental concepts of mass transfer principles	Remember/ Understand	-	L1/L2	Exam/Assignme nt/Seminar/Quiz					
CO2	Ability to apply mass transfer concepts and solve complex problems in mass transfer operations	Apply		L3	Exam/Assignme nt/Seminar/Quiz /Lab/Project					
CO3	Ability to analyze various technological methods used in mass transfer processes	Analyze		L4	Exam/Assignme nt/Seminar/Quiz /Lab/Project					
CO4	Ability to investigate and select mass transfer equipment for various	Investigate		L5	Mini Project/Assignm ent/Quiz/Lab/Ex					

	industrial applications				am
CO5	Ability to design mass transfer	Design		L6	Assignment/Lab
	equipments used in chemical industries				/Exam/Seminar
CO6	Ability to conduct experiments using	Modern		-	Lab/Project
	modern tools: ANSYS - ICEM CFD,	Tools			
	CFX, FLUENT.				
	Course Level As	sessment Oue	stions		

# **Course Outcome 1 (CO1):**

1. Explain about diffusivity in liquids and gases

2. Show that  $J_A = -J_B$ 

3. Define the term 'Psychrometric ratio' and explain its significance

4. Explain the various regions of drying with a neat rate curve

5. Explain different techniques of achieving super saturation with suitable examples

### **Course Outcome 2 (CO2):**

1. A mixture of air and water is at a total pressure of 900 mm Hg. The percentage saturation is 40%. Estimate the absolute humidity and relative saturation. The vapour pressure of water at the given condition is 300 mm Hg.

2. A wet solid is to be dried from 80 to 10% moisture, wet basis. What is the moisture to be evaporated per 1000kg of dried product?

3. A solution of sodium carbonate available at a temperature of 40°C with a solute content of 30%. Find out the weight of  $Na_2CO_3.10H_2O$  crystal formed if 2000 kg of this solution is cooled to 10°C. Also find out the yield. Solubility at 10°C is 12.5 g  $Na_2CO_3/10$  g of water.

4. A crystal of copper sulfate CuSO₄.5H₂O falls through a large tank of pure water at 20⁰C. Estimate the rate at which the crystal dissolves by calculating the flux of CuSO₄ from the crystal surface to the bulk solution. Molecular diffusion occurs through a film of water uniformly 0.0305 mm thick surrounding the crystal. At the inner side of the film, adjacent to the crystal surface, the concentration of CuSO₄ is 0.0229 mole fraction CuSO₄ (density of solution = 1193 kg/m³). The outer surface of the film is pure water. The diffusivity of CuSO₄ is 7.29 X10⁻¹⁰ m²/s.

5. In a wetted wall column carbon dioxide is being absorbed from air by water flowing at 2 atm pressure and  $25^{0}$ C. The mass transfer coefficient k_y has been estimated to be 6.78 X10⁻⁵ kmol/(m².s.mole fraction).Calculate the rate of absorption if the partial pressure of carbon dioxide at the interface is 0.2 atm and the air is pure. Also determine k_y and k_g.

# Course Outcome 3 (CO3):

1. Give an account for the counter current and co-current process by drawing the equilibrium and operating line

2. Elaborate the theory of wet bulb temperature and derive an equation to determine wet bulb depression.

3. In an experimental study of absorption of ammonia by water in a wetted wall column, the overall gas phase mass transfer coefficient,  $K_G$  was estimated as  $2.72 \times 10^{-4}$  kmol/m²s.atm. At one point in the column the gas contained 10 mol% ammonia and the liquid phase concentration was  $6.42 \times 10^{-2}$  kmol NH₃/m³ of solution. Temperature is 293K and the total pressure is 1 atm. 85% of the resistance to mass transfer lies in gas phase. If Henry's law constant is 9.35 x  $10^{-3}$  atm.m³/kmol, calculate the individual film coefficient and the interfacial composition

4. A batch of the solid, for which the following table of data applies, is to be dried from 30% to 6% moisture under conditions identical to those for which the data were tabulated. The initial weight of the wet solid is 300 kg and the drying surface is  $1m^2/10$  kg dry weight. Determine the time for drying.

X x 100 (kg moisture/kg dry solid)	45	35	25	20	18	16	14	12	10	9	8	7	6.4	
---------------------------------------	----	----	----	----	----	----	----	----	----	---	---	---	-----	--

N x 100 (kg moisture evaporated/hr $m^2$ )	30	30	30	30	26.6	23.9	20.8	18	15	9.7	7	4.3	2.5	
cvaporated/m.m.)														

5. Under constant drying conditions, a filter cake takes 7 hours to reduce its moisture content from 30% to 10% on wet basis. The critical moisture is 14% and the equilibrium moisture 4% both on dry basis. Assuming the rate of drying in the falling rate period to be directly proportional to the free moisture content, estimate the time required to dry the cake from 30% to 6% moisture on wet basis

### **Course Outcome 4 (CO4):**

1. Compare and contrast packed column with plate column used in industries

2. In an apparatus for the absorption of  $SO_2$  in water at one point in the column the concentration of  $SO_2$  in gas phase was 10% by volume and was in contact with a liquid containing 0.35%  $SO_2$  by weight. Pressure and temperature are 1atm and 303 K respectively. The overall gas phase phase mass transfer coefficient is 7.36 x 10⁻¹⁰ kmole/m².s.(N/m²). Of the total resistance 50% lies in the gas phase and 50 % in the liquid phase.

Equilibrium Data:

kg SO ₂ /100 kg water	0.2	0.3	0.5	0.7
Partial pressure of SO ₂ , mm Hg	29	46	83	119

3. Explain with a neat sketch the construction and operation of induced draft cooling tower and its significance in chemical processes.

4. In an experimental study of absorption of ammonia by water in a wetted wall column, the overall gas phase mass transfer coefficient,  $K_G$  was estimated as  $2.72 \times 10^{-4}$  kmol/m²s.atm. At one point in the column the gas contained 10 mol% ammonia and the liquid phase concentration was  $6.42 \times 10^{-2}$  kmol NH₃/m³ of solution. Temperature is 293K and the total pressure is 1 atm. 85% of the resistance to mass transfer lies in gas phase. If Henry's law constant is 9.35 x  $10^{-3}$  atm.m³/kmol, calculate the individual film coefficient and the interfacial composition

5. A commercial drier needed 7 hours to dry a moist material from 33% moisture content to 9% on bone dry basis. The critical and equilibrium moisture content were 16% and 5% on bone dry basis respectively. Determine the time needed to dry the material from a moisture content of 37% to 7% on bone dry basis if the drying conditions remain unchanged.

#### **Course Outcome 5 (CO5):**

1. Write a note on Mixed Suspension- Mixed Product Removal (MSMPR) model in the design of crystallizer

2. A plant requires 2000 kg/min of cooling water to flow through its distillation equipment condensers. The water will leave the condensers at  $50^{\circ}$ C. It is planned to design a counter current cooling tower in order to cool this water to  $30^{\circ}$ C from  $50^{\circ}$ C for reuse, by contact with air. Air is available at  $30^{\circ}$ C DBT and  $24^{\circ}$ C WBT. 30% of excess air will be used and the make up water will enter at  $15^{\circ}$ C. For the packing to be used, the value of mass transfer coefficient is expected to be 2500 Kg/hr.m³. $\Delta$ Y, provided the minimum liquid rate and gas rates are 12,000 and 10,000 kg/h. m² respectively. Determine the diameter of the cooling tower and make up to be used.

Temp ⁰ C	20	30	40	50	55
Enthalpy, KJ/kg	60.735	101.79	166.49	278.72	354.92

3. How much feed is required when 10000 kg of crystal as  $FeSO_4.7H_2O$  is produced per hour by a simple vacuum crystallizer. The feed containing 40 parts of  $FeSO_4$  per 100 parts of total water, enters the crystallizer at 80°C. The crystallizer vacuum is such that crystallizer temperature of 30°C can be produced.

Data: Saturated solution at 30°C contains 30 parts of  $FeSO_4$  per 100 parts of total water vapour enthalpy is 612 cal/g (neglect superheat). The enthalpies of saturated solution, the crystals leaving the crystallizer and feed are: -1.33, -50.56 and 26.002 cal/g.

4. Explain the design of cooling towers and the steps involved in the design of cooling towers

	19UGS431 - REASONING AND QUANTITATIVE APTITUDE	L	Т	Р	С					
		1	0	0	1					
OBJECTIVE	ES :		<u> </u>							
1. To make the student acquire sound knowledge of the characteristic of quantitative and										
qualitative aptitude.										
2. To familiarize the student with various principles involved in solving mathematical problems.										
3. To develop an understanding of the basic concepts of reasoning skills.										
UNIT I	QUANTITATIVE APTITUDE			8						
Ratio and Pro	oportion - Averages - Percentages - Problems on ages - Profit and	1 Lo	ss – S	imple	and					
Compound In	terest Time - Speed -Distance - Time and Work - Permutation	1 and	l Com	binati	ion -					
Alligation or I	Mixture – Probability – Clocks – Calendars.									
UNIT II	VERBAL AND NON VERBAL REASONING			7						
Analytical Re	easoning - Circular and Linear arrangement - Direction problems	- B	lood r	elatio	ons –					
Analogy – Oc	ld Man Out – Venn Diagrams - Data Sufficiency – Data interpreta	ation	i — S	yllogi	sm -					
Coding – Dec	Coding – Decoding.									
TOTAL = 15 Period										
COUDSE OI	ITCOMES									

# **COURSE OUTCOMES:**

After the successful completion of this course, the student will be able to

- Select an appropriate technique to solve the quantitative problems within the stipulated time. (Apply)
- Apply Verbal and Non Verbal Reasoning skills to solve the problems based on the logical and analytical reasoning. (Apply)
- Analyse the direction to solve equations involving one are more unknowns. (Analyse)

# WEBSITES:

www.m4maths.com, www.indiabix.com, www.fresherworld.com, www.campusgate.co.in, www.indianstudyhub.in, www.tcyonline.com.

# **TEXT BOOKS:**

- Dr. R.S.AGARWAL, "Quantitative Aptitude", S. Chand Publications, New Delhi, 20th Edition, (2013).
- ABIJIT GUHA, "Quantitative Aptitude for Competitive Examinations", Tata McGraw Hill Publication, New Delhi, 4th Edition, (2011).
- R.V.Praveen, "Quantitative Aptitude and Reasoning", PHI Learning Pvt. Ltd., Delhi, 2nd Edition, (2013).

# **REFERENCE BOOKS:**

- ASHISH AGGARWAL, "Quick Arithmetic", S. Chand Publications, New Delhi, 6th Revised Edition, (2014).
- Dr.V.A.SATHGURUNATH'S "A Guide for Campus Recruitment", Sagarikka Publications, Thiruchirapalli, 3rd Edition, (2011).

# **19UGM431 - GENDER EQUALITY**

# **Objectives:**

• To introduce basic concepts relating to gender and to provide logical understanding of gender roles.

# UNIT I GENDER SENSITIZATION

Definition of gender, Perspectives-Gender sensitive approach- Gender and sex- Social construction of gender and gender roles- Socialisation- institutions of socialization- changing content and context of gender-need for re-socialization. Gender Stereotyping and Gender Discrimination

# UNIT II GENDER EQUALITY AND CONSTITUTION

Indian constitution related to equality - Fundamental rights - Directive principles of state policy - right to equality - rights against exploitation - cultural and educational rights - the right to constitutional remedy - University Declaration of Human Rights - Enforcement of Human Rights for Women and Children - Role of Cells and Counselling Centres- Internal Complaints Committee - Legal AID cells, Help line, State and National level Commission

# **UNIT III GENDER ROLES & EQUALITY**

Gender & Morality – Structural and functionalist views of Gender- Gender in the Classroom-Beyond access for girls and boys- Gender equality in schools- Gender equality and adult basic education- Developing capacity to achieve gender equality in education- Individuality and removal of gender stereotypes- Respect for each other's-Promote equal Opportunity

# **REFERENCES:**

- 1. Sheila Aikman and Elaine Unterhalter, "Practising Gender Equality in Education", Oxfam GB, 2007.
- 2. Pasadena and Hackensack, "Gender roles and Equality", Salem Press, 2011.

<b>19UC</b>	H501	PROCESS ECONOMICS AND MANAGEMENT	L	Т	Р	С	
AIM: This c manag perform	ourse p gement, m as eff	rovides the basic concept of cost estimation, feasibility analysis, organization and quality control that will enable the students to ficient managers at Industries.	2	1	0	3	
MOD	DULE	TOPICS	•		LH	Irs	
I	A	<b>UNIT – I</b> Economics – Basics Concepts and Principles – Demand and Supp Law of demand and Supply –Determinants – Market Equilibrium Circular Flow of Economic activities and Income.	oly – 1 –		9	)	
IIAUNIT – II National Income and its measurement techniques. Inflation – Causes of Inflation – Controlling Inflation – Business Cycle. Forms of business – Management Functions: Planning, Organizing, Staffing, Leading and Controlling - Managerial Skills - Levels of Management - Roles of manager.							
ш	A	UNIT – III Marketing - Core Concepts of Marketing - Four P's of Marketing product development – ProductLife Cycle - Pricing Strategies ar Decisions.	g – Ne nd	W	ç	)	
IVAUNIT – IV Operations Management - Resources - Types of Production system - Site selection, Plant Layout, Steps in Production Planning and Control – Inventory - EOQ Determination.							
V       A       UNIT – V         Accounting Principles – Financial Statements and its uses – Depreciation:         Straight Line and Diminishing Balance Method – Break Even Analysis –         Capital Budgeting: Meaning – Types of decisions – Methods         (Theory).							
·			tal H	ours	4	5	
Text I 1. Eco Kong	<b>300ks</b> nomics gu Engir	and Management For Engineers, Compiled by Department of Mana neering College, McGraw-Hill Education, India, 2013.	gemei	nt stuc	lies,		

Refere	ence Books										
1. Jeff	Madura, —Fundamentals of BusinessI, Ce	ngage Learnin	g Inc., I	ndia, 2007.							
	COURSE	OUTCOMES	•								
The stu	idents have the										
CO1	Ability to estimate market equilibrium an	nd interpret nat	tional in	come calcula	ation and						
<u> </u>	Inflation issues.	a and analyza	the func	tions of Ma	nacamant						
C02	Ability to categorize the forms of busines	ss and analyze	the func	cuons or ivia	nagement.						
CO3	Ability to applaise marketing manageme										
C04	Ability to apply appropriate operation ma	anagement cor		business situ	ations.						
COS	COS Ability to interpret at apply financial and accounting statements.										
	Ability to conduct experiments using mo	odern tools.	ogromn	no Outooma							
Course	Course Outcome			Plaam'a	Aggaggmant						
	Course Outcome	SKIII	PO	BIOOM S Taxono	Assessment Tools to						
				mv	measure CO						
CO1	Ability to estimate market equilibrium	Remember/	-	L1/L2	Exam/Assignme						
	and interpret national income	Understand			nt/Seminar/Quiz						
	calculation and inflation issues.										
CO2	Ability to categorize the forms of	Analyze	PO2	L3	Exam/Assignme						
	business and analyze the functions of	2			nt/Seminar/Quiz						
	Management.				/Lab/Project						
CO3	Ability to appraise marketing	Understand	-	L4	Exam/Assignme						
	management decisions.				nt/Seminar/Quiz						
					/Lab/Project						
CO4	Ability to apply appropriate operation	Apply	PO1	L5	Mini						
	management concept in business				Project/Assignm						
	situations.				am						
CO5	Ability to Interpret at apply financial	Apply	PO1	L6	Assignment/Lab						
	and accounting statements.				/Exam/Seminar						
CO6	Ability to conduct experiments using	Modern	PO5	L3	Lab/Project						
	modern tools.	Tools									
	Course Level As	ssessment Que	estions		·						
Course	e Outcome 1 (CO1):										
1.	Write a note on to calculate national incom	me?									
2.	Explain the equilibrium level of national	income?									
5. 1	With a neat sketch, explain the working r	in example?	culation	equilibrium	consumption?						
	Distinguish between the two types of eq	milibrium con	sumptio	n bringing	out their essential						
	features.	1	r								
	e Outcome 2 (CO2):	4	aior f	4 <b>1</b> • • • • • • •							
	Derive the categories of management? Ob	otain an express	sion for	tnese measu	res.						
2.	A factory is making a pipe fitting by (a) c	osting, (b) forg	ging. The	e cost data 19	s as follows:						
	1 Material cost/price in Rs			r orging 2	5						
				4							

one fitting Labour rate 3 hrs 0.80/hr

4. Over-heads 25% of labour cost

48 minutes 0.80/hr 150% of labour cost

3. Explain how will you find out the functions of management?

- 4. What are the forms of business cycle?
- 5. Discuss in detail about the services in high demand?

# **Course Outcome 3 (CO3):**

3.

- 1. A project expected to have cash flow for the five years as follows after all expenses and taxes the initial fixed capital investment is 1000000 and the working capital investment is 15% of the fixed capital investment.
- 2. By investing 96000 in automatic machines, number of operations are reduced, saving in labour is estimated to be a Rs.4/hr. find the rate of return, the salvage value after 8 years is estimated to be a Rs.16000, the unit works for 24 hrs and 300 days/year.
- 3. A mining company estimates that it can increase a sales if it procure a new machine to cut more. The installed cost of new machine is Rs.3000000.the extra expenditure per year is Rs.1750000 and extra income is 75% of installed cost per year.the salvage value of after 12 years is expected to be 12.5% of installed cost.what is the rate of return?
- 4. What decisions do make marketing management functions?
- 5. How do you evaluate marketing? Explain the different methodologies with suitable examples?

# **Course Outcome 4 (CO4):**

- 1. What are the concepts of operations management?
- 2. What is the role of operations management in a business?
- 3. State Operation management with example.
- 4. How is Operations Management linked to other business functions?

# **Course Outcome 5 (CO5):**

- 1. How do you interpret financial statements?
- 2. What is interpretation in accounting?
- 3. Why there is a need to understand interpret and analyze financial statement reports?
- 4. Show that interpret income statement and balance sheet?

19UCH502 MASS TRANSFER II					Р	С				
			2	1	0	3				
OBJECTIVES										
The course is aimed to										
Impart knowledge on mass transfer operations and mechanism										
• Understand mass transfer in absorber, distillation column, liquid-liquid and solid										
MODULE TOPICS										
I A SORPTION Equilibrium and operating line concept in absorption calculations; types of contactors, design of packed and plate type absorbers; Operating characteristics of stage wise and differential contactors, concepts of NTU, HTU and overall volumetric mass transfer coefficients; multicomponent absorption; mechanism and model of absorption with chemical reaction; thermal effects in absorption process										
п	IIDISTILLATION Vapour-Liquid Equilibria, Raoult's law and deviations from ideality, methods of distillation: Flash distillation, differential or simple distillation, steam distillation, multistage continuous rectification, Total reflux, minimum reflux ratio, optimum reflux ratio, Choice and effect of pressure in distillation column Design calculations by McCabe-Thiele and Ponchon- Saugrit methods, Mumbres stage and everall efficiency.									
III	A	LIQUID-LIQUID EXTRACTION         Equilibrium in ternary systems; equilibrium stage wise contact calculations         for batch and continuous extractors, differential contact extraction         equipment - spray, packed and mechanically agitated contactors and their								
IV	A	<b>SOLID-LIQUID EXTRACTION (LEACHING)</b> Solid-liquid equilibria; leaching equipment-batch and continue calculation of number of stages.	ous ty	pes;	9	)				
V	A	ADSORPTION Theories of adsorption of gases and liquids; industrial a adsorption equipment for batch and continuous operation; design c of ion-exchange resins; principle of ion-exchange; industrial equip	dsorb alcula ment.	ents, ation	9					
		Tot	al H	ours	4	5				
Text E 1. Trey 2. Mc Edition 3. Nar CBS P Reference 1. Gea	Books ybal, R. Cabe, V n., McG ayanan Publishe ence Bo nkoplis	E., "Mass Transfer Operations", 3rd Edition, McGraw-Hill,1981. W.L., Smith, J.C. and Harriot, P.,"Unit Operations in Chemica araw-Hill, 2005. K.V. and Lakshmikutty, B "Mass Transfer – Theory and Applic rs & Distributors Pvt Ltd, New Delhi, 2014. <b>oks</b> , C.J., "Transport Processes and Unit Operations", 4th Edition, Pren	l Eng ations tice	gineer s", 1st	ing", t Edit	7th ion,				
HallIn	c., New	Jersey, 2003.								
2 Cor	ilson I	M and Richardson I.F. "Chemical Engineering" Vol I and II	/th	Editic	n Δ	rion				

2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol. I and II, 4th Edition, Asian Books Pvt. Ltd., India, 1998.

3. Seader J.D. and Henley E.J., "Separation Process Principles", 2nd Ed., John Wiley, 2006

COURSE OUTCOMES											
The stu	idents have the										
CO1	Ability to define, understand and explain the fundamental concepts in all mass										
	transfer operations										
CO2	Ability to apply mass transfer concepts and solve complex problems in mass transfer										
	operations										
CO3	Ability to analyze various technological	methods used	in mass	transfer indu	strial processes						
CO4	Ability to investigate and select mass tran	nsfer equipme	nt for v	arious industi	rial applications						
CO5	Ability to design mass transfer equipment	its used in che	mical in	dustries							
CO6	Ability to conduct experiments using mo	dern tools.									
Course	<mark>e Outcomes</mark> Mapping with Bloom's Taxo	onomy and Pr	ogram	me Outcome	S						
	Course Outcome	Skill	PO	Bloom's	Assessment						
				Taxonom	Tools to						
COL	Ability to define understand and	Domombor/		<u>y</u>	Exam/A agignmo						
COI	Ability to define, understand and	Understand	-	L1/L2	nt/Seminar/Quiz						
	mass transfor operations	Chaeistana			in Seminar Quiz						
CO2	A hility to apply mass transfer concents	Apply	DO1	1.2	Euom/Assignma						
02	Addity to apply mass transfer concepts	Арргу	FUI	LS	nt/Seminar/Quiz						
	and solve complex problems in mass				/Lab/Project						
CO2	A hility to an alway various	A molecume	DOD	I A	Exam / A asian ma						
COS	Adding to analyze various	Analyze	PO2	L4	exam/Assignme nt/Seminar/Quiz						
	technological methods used in mass				/Lab/Project						
004	transfer industrial processes	<b>T</b>	<b>DO</b> 4	T. 7							
CO4	Ability to investigate and select mass	Investigate	PO4	L5	Mini Project/Assignm						
	transfer equipment for various				ent/Quiz/Lab/Ex						
	industrial applications				am						
CO5	Ability to design mass transfer	Design	PO3	L6	Assignment/Lab						
	equipments used in chemical industries				/Exam/Seminar						
CO6	Ability to conduct experiments using	Modern	PO5	L3	Lab/Project						
	modern tools.	Tools									
	Course Level As	sessment Que	estions								
Course	e Outcome 1 (CO1):										
1. Writ	e a note on pressure drop in packed towers	s for absorption	n								
2. Expl	ain the principle of steam distillation										
3. Deri	ve Kremser equation for the continuous co	unter-current	extracti	on operation.							
4. With	a neat sketch, explain the working princip	ole of various	leaching	g equipments							
5. Disti	nguish between the two types of adsorptio	n phenomena	bringin	g out their es	sential features						
Course	e Outcome 2 (CO2):										

1. Derive an equation for finding out the height of a packed column operating in a counter current method. Obtain an expression for the determination of the height of the absorption tower.

2. In a binary mixture the vapor pressure of A is 800 mm Hg and that of B is 400 mm Hg. Estimate the vapor composition in equilibrium with the liquid if the composition in liquid phase is 50 mole % A.

3. Explain how will you find out the final composition of the solute in the raffinate for immiscible solvent and diluents in single and multistage cross current extraction.

4. 0.8 kg/s of seeds containing 30% by wt. of oil are extracted on a counter-current unit and 95% of the oil recovered in a solution containing 50% by wt. oil. Calculate the number of stages of the final conc. from stage one (over flow) twice final conc. from stage N counter flow.

5. Discuss in detail about the commercial adsorbents available in the market for various industrial applications

# Course Outcome 3 (CO3):

1. An air-ammonia mixture containing 5% ammonia by volume is absorbed in water in a packed column operated at 200C and 1 atm pressure. So as to recover 98% NH3. If the inert gas flow rate in the column is 1200 kg/m2.hr. calculate

(i) The minimum mass velocity of water from this column.

(ii) The number of transfer units in the column taking the operating liquid rate to be 1.25 times the minimum.

(iii) The height of the packed tower taking the overall transfer coefficient KG a to be 128 kg moles/m3.hr.atm. The relationship for equilibrium in the column is y = 1.154 x, where y and x are in mole fraction units.

2. A feed mixture of A and B (45 mole %A and 55 mol % B) is to be separated into a top product containing 96 mol %A and bottom product having 95 mol % B. The feed is 50% vapour and reflux ratio is 1.5 times the minimum. Determine the number of ideal trays required and the location of feed tray. Given  $\alpha AB = 2.8$ .

3. A solution of 5% acetaldehyde in toluene is to be extracted with water in a five-stage co-current unit. If 25 kg of water/100 kg feed is used, find the amount of acetaldehyde extracted and the final concentration. (Both by theoretical and graphical method)

The equilibrium relation is given by:

(kg acetaldehyde/kg water) = 2.20 (kg acetaldehyde/kg toluene).

4. 1.6 kg/s of sand-salt mixture containing 62.5% sand is leached with 0.5 kg/s of water in a countercurrent. The residue from each stage containing 0.25 kg water per kg insoluble solid. Find the number of stages such that the sand from the final stage contains 10% salt when dried.

5. The equilibrium decolourization data for a certain system using activated carbon is given by the equation

# $Y = 0.004 X^2$

where Y is g colouring impurity/kg impurity free solution and x is g colouring impurity/kg pure activated carbon.

Calculate the amount of activated carbon required per 1000 kg of impurity free solution to reduce the impurity concentration from 1.2 to 0.2 g/kg of impurity free solution using (i) a single stage operation and (ii) a two-stage cross-current operation with intermediate composition of 0.5 g of coloring impurity per kg of impurity free solution.

# **Course Outcome 4 (CO4):**

1. NH3 is absorbed from a gas by water in a scrubber under atm pressure. The initial NH3 content in the gas is 0.04kmole / kmole of inert gas. The recovery of NH₃ by absorption is 90%. The water enters the tower free from NH₃. Estimate the

(i) Concentration of NH3 in the existing liquid if the actual water used is 1.5 times minimum.

(ii) Number of theoretical stages required If the height of a transfer unit is 0.5 m estimate the height

#### of column.

x: 0.005 0.01 0.0125 0.015 0.02 0.023

y: 0.0045 0.0102 0.0138 0.0183 0.0273 0.0327 where x and y are mole ratios.

2. A mixture of 40% A and 60% B is to be separated by distillation using a reflux ratio 3.5 so as to form an overhead product containing 95 mol% of A and a bottom product containing 95 mol% of B. The feed is saturated vapour. The relative volatility of A to B is 2.5. Determine the following:

(i) Minimum reflux ratio

(ii) Number of theoretical plates

(iii) Minimum number of theoretical plates

3. 1000 kg/hr of a dioxane-water mixture containing 25% dioxane (by weight) is to be continuously extracted in counter fashion with benzene to remove 95% of the dioxane. Assume benzene and water are immiscible with each other. The equilibrium data are as follows:

Wt % dioxane in water phase 5.1 18.9 25.2

Wt % dioxane in benzene phase 5.2 22.5 32.0

(i) Calculate the minimum solvent required in kg/hr and (ii) If 900 kg/hr of solvent is used, calculate the number of theoretical stages required.

4. Nicotine in water containing 1%Nicotine is to be extracted with kerosene at 200°C water. Water and kerosene are insoluble. Estimate the percentage extraction of Nicotine for the following cases.

(i) If 100 kg of feed solution is extracted in a single stage with 150 kg of solvent.

(ii) If 100 kg of feed solution is extracted in three theoretical stages using 50kg of fresh solvent in each stage.

Equilibrium 0 0.00101 0.00246 0.00502 0.00751 0.00998 0.0204 data: X'

Y' 0 0.00081 0.001962 0.00456 0.00686 0.00913 0.0197

5. An aqueous solution is colored by small amounts of impurity which is to be removed by adsorption on activated carbon. The color intensity which is proportional to the concentration of the colored substance was measured on an arbitrary scale. It is desired to reduce the color to 10 % of its original value, 9.6. Estimate the amount of adsorbent used for single stage.

Kg of carbon/ kg of solution	0	0.001	0.004	0.008	0.02	0.04
Equilibrium color	9.6	8.6	8.3	4.3	1.7	0.7

# **Course Outcome 5 (CO5):**

1. It is desired to recover 98% ammonia from air-ammonia mixture containing 2% ammonia at 20 C and at 1 atm by scrubbing with water in a tower packed with 2.54 cm rasching rings. If the gas flow rate is 19.5 kg/m².min at the inlet and liquid flow rate is 1.8 times the minimum. Estimate the height of packed tower for countercurrent operation. Absorption is assumed to be isothermal. The equilibrium relation is given by y = 0.764 x, where y, x are gas and liquid phase composition of ammonia in mole fraction respectively. The overall mass transfer coefficient is 1.04 kg mole/m³atm.min

2. A continuous distillation column is to be designed 7000kg/hr of liquid mixture with 60% methanol and 40 mole% water into an overhead product containing 90 mole% methanol and water product 95 mole% water. Reflux ratio of 2 times the minimum value is used. Assume relative volatility of methanol and water is 3. Calculate (i) the moles of overhead of water product. (ii) Number of ideal trays and feed tray if the feed is at boiling point.

3. A solution containing 20 mass per cent of acetone in water is to be extracted using

monochlorobenzene (MCB) containing 0.5% acetone by weight by counter current extraction process. MCB and water may be considered to be immiscible within the operating range. The equilibrium data are as follows:

Kg of acetone Per Kg of water0.02580.07390.16050.267Kg of acetone Per Kg of MCB0.02880.07040.1560.237

4. 2 kg/s of a solid containing 30% by mass a water soluble component is to be leached in a counter – current unit . Given that the recovery is 98% and that the under flow from each stage contains 0.5 kg water / kg insoluble solid . Find :

(A) The number of stages required if the water flow rate is 1.6 kg/s .

(B) The water flow rate if the number of stages is 3.

5. Design a fixed bed adsorber with ion-exchange resins as packing materials with two stages used for treatment process in industry. Assume the equilibrium and other data applicable for the system.

### **Course Outcome 6 (CO6):**

1. Develop MATLAB simulation studies for the flow through fractional distillation column

2. Design and simulate the single stage extraction device using MATLAB SIMULINK

3. A soluble gas is absorbed in water using packed tower. The equilibrium relationship is

Тор	Bottom
0	0.08

X 0 0.08 Y 0.001 0.009

If the individual height of transfer units based on liquid phase and gas phase respectively are  $H_x = 0.24$  m and Hy = 0.36 m, determine the height of packing. Simulate the absorption tower using ASPEN software for the given conditions.

1011011-1		L	Т	Р	С			
IPOCHS05 CHEMICAL REACTION ENGINEERING I 2 1 0								
AIM To study a reactors.	about reactions and the factors influence the ra	ate of rea	ction and	to desig	gn various			
OBJECTIVES								
Students will be Basic Desig	introduced and developing an understanding on Concepts of Kinetics and Rate Laws n and Rating of Ideal Reactors including heat ef	fects						
• Interp	retation of Rate data							
<ul><li>Desig</li><li>Analy</li></ul>	n and Rating of Reactors involving multiple reasis of Non-ideal flow behavior in Reactors	ctions inc	luding he	eat effect	8			
MODULE	TOPICS				L Hrs			
Ι	I         FUNDAMENTAL CONCEPTS AND DEFENITIONS           Reaction – Classification of reaction, rate and stoichiometry, rate law, rate equation, rate constant, activation energy, elementary and non elementary reactions, meleority and order of reaction							
П	II CHEMICAL KINETICS Theories of reaction rates, Interpretation of batch reactor data: constant volume system. Integral method, Differential method, analysis of data for reversible and irreversible reactions, reaction mechanism, variable volume system							
III	<b>ISOTHERMAL IDEAL REACTOR DESIGN OF S</b> Design of ideal batch reactor, ideal mixed flow reactor comparison of single reactors for single reactions	SINGLE R , ideal plug	EACTION flow react	NS or-size	6			
IV	MULTIPLE REACTORS Multiple reactor systems – equal sized MFR in series – – Plug flow reactors in series (or) in parallel – reactors	unequal si of different	zed MFR in se	n series eries	6			
V	SPECIAL REACTORS Design of recycle reactor Design of autocatalytic react	or			5			
VI       Design of recycle reactor, Design of autocatalytic reactor         VI       DESIGN OF MULTIPLE REACTIONS         Design of parallel (simultaneous) reactions CSTR, PFR – Design of series         (consecutive) reactions CSTR, PFR – Design of combined series and parallel         reactions								
VII	NON ISOTHERMAL REACTORS Adiabatic reactors – rate of heat exchange for different temperature progression – operation of batch and contin	reactors – o nuous reacto	optimum ors.		6			
VIII	NON – IDEAL REACTORS Basics of non- ideal flow, Residence time distribution, curves, Modelling of non- ideal reactors – one paramete conversion in non – ideal reactors.	relationship er and two j	between C parameter r	C, E, F nodels,	5			

#### **Text Books**

1. O. Levenspiel, Chemical Reaction Engineering, 3rd ed., Wiley Publications, 2006. **Reference Books** 

1. H.S. Fogler, Elements of Chemical Reaction Engineering, 5 th ed., Prentice Hall India Pvt. Ltd., New Delhi, 2016.

**Total Hours** 

45

2. G. F Froment, K.B Bischoff and J.D Wilde, "Chemical Reactor Analysis and Design", Wiley, New York, 2010

3. J.M. Smith, Chemical Engineering Kinetics, 8 th ed., McGraw-Hill, 2008.

	Course Outcomes	Bloom's Level
CO1	Describe the concepts and carryout findings on activation energy, rate constant, order and	Remember

	molecularity.						
CO2	Calculate design parameters of	various single and	1		Apply		
	multiple reactor system						
CO3	Ability to categorize reactors for	or various industri	al	Analyze			
CO4	applications	. 1					
C04	Judge reactor system for a parti	cular reaction to	14		Evaluate		
COF	Construct models to study the	selectivity and yie			Ample		
05	ideal reactors	conversion of non	_		Арріу		
CO6	Design various ideal isotherma	l reactors, special			Create		
	reactors using software	× 1					
	<b>Course Outcomes</b> Mapping with	Bloom's Taxe	onomy	and Program	mme Outcomes		
	Course Outcome	Skill	PO	<b>Bloom's</b>	Assessment Tools		
				Taxono	to measure CO		
				mv			
CO1	Describe the concepts and carryout	Remember/Un	-	L1/L2	Exam/Assignment/Semin		
	findings on activation energy rate	derstand			ar/Quiz		
	constant order and molecularity						
CO2	Coloulote design peremeters of	Apply	DO1	I 2	Exem/Assignment/Somin		
02	various single and multiple reactor	Арргу	FUI	LJ	ar/Ouiz/Lab/Project		
	various single and multiple reactor				al/Quiz/Lab/110jeet		
	system						
CO3	Ability to categorize reactors for	Analyze	PO2	L4	Exam/Assignment/Semin		
	various industrial applications				ar/Quiz/Lab/Project		
CO4	Judge reactor system for a particular	Investigate	PO4	L5	Mini		
	reaction to achieve maximum	C			Project/Assignment/Quiz		
	conversion, selectivity and yield				/Lab/Exam		
CO5	Construct models to study the	Design	PO3	L6	Assignment/Lab/Exam/S		
000	conversion of non $-$ ideal reactors	2 congin	1 00	eminar			
C06	Design various ideal isothermal	Modern Tools	PO5	13	Lab/Project		
	reactors special reactors using		105				
	software						
	Convecto	vol Assossmon		tions	1		
I	Course Le	vei Assessillell	n Ques	110115			

# **Course Outcome 1 (CO1):**

1. What is an ideal batch reactor?

2. What are the methods by which we can maintain low concentration of CA in parallel reactions?

3. Give the energy balance equation for an adiabatic reaction.

4. What is pulse input and step input method?

5. Discuss in detail the tanks in series model to predict the conversion from the RTD data

6. Discuss in detail about RTD measurement by step input method with various plots obtained

7. Derive the performance equation of plug flow reactor and give the graphical representation of performance equation

# Course Outcome 2 (CO2):

**1.** An elementary liquid phase reaction  $A+B \rightarrow P$  with  $-r_A = 500$  l/mol min and  $C_{AO}=C_{BO}=.01$  mol/l is carried out in a tubular reactor whose volume is 0.1 l and V_O is 0.05 l/min. Find the fractional conversion of reactants that can be achieved?

2. For the parallel reactions  $A \rightarrow R$ ,  $r_R = 1, A \rightarrow S$ ,  $r_S = 2C_A \quad A \rightarrow T$ ,  $r_T = 1C_A^2$  with  $C_{AO} = 2$  gmol/lit.what will be the fractional yield of S when fractional concentration is 0.5

3. It is proposed to operate a batch reactor for converting A-- $\rightarrow$ R. This is a liquid phase reaction with the stoichiometry A-- $\rightarrow$ R. Evaluate the time required to drop the concentration of A from C_{AO} = 1.3 mol/lit to C_{Af}=0.30 mol/lit? The rate versus concentration data is

C _A (mol/lit )	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	1.3	2.0
-r _A	0.1	0.3	0.5	0.6	0.5	0.25	0.10	0.06	0.05	0.045	0.042

4. Liquid reactant A decomposes as per the following reactions in parallel

$$A \rightarrow R$$
  
 $A \rightarrow S(desired)$   
 $A \rightarrow T$ 

With  $r_R = 1$ ,  $r_S=2 C_A$  and  $r_T = CA^2$  and  $C_{AO} = 2$  in a feed. Determine the maximum concentration of desired product that can be obtained in a mixed flow reactor

5. The first order irreversible liquid phase reaction is carried out in a mixed flow reactor. The density of the reaction mixture is  $1.2g/cm^3$  and the specific heat is 0.9cal/g.c. the volumetric flow rate is 200 cm³/s and the reactor volume is 10lit.  $k = 1.8 \times 10^5 e^{-12000/RT}$ . If the heat of reaction is - 46000cal/mol and feed temperature is 293k (20°C). What are possible temperature and pressure for stable, adiabatic operation for a feed concentration of 4mol/lit.

# Course Outcome 3 (CO3):

**1.** A liquid phase reaction with stoichiometry  $A \rightarrow R$  is carried out in a plug flow reactor whose rate versus concentration data is given below is studied. Determine the size of the plug flow reactor required to achieve 80% conversion of a feed stream of 1000 mol A/hr at  $C_{AO}= 1.5 \text{ mol/l}$ 

C _A , mol/l	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	1.3	2.0
-r _{A,}	0.1	0.3	0.5	0.6	0.5	0.25	0.10	0.06	0.05	0.045	0.042
(mol/l .min)											

- 2. A homogenous liquid phase reaction with stoichiometry and kinetics  $A \rightarrow S$ ,  $-r_A = k C_A^2$  takes place in a mixed flow reactor and results in 50% conversion.
  - i) find the conversion if this reactor is replaced by another mixed flow reactor having volume 6 times that of the original reactor.
  - ii) find the conversion if the original reactor is replaced by a plug flow reactor of same size.

3. The following reactions are observed when an olefin is epoxidized with dioxygen:

alkene + O2 ===> epoxide

epoxide + O2 ===> CO2 + H20

alkene + O2 ===> CO2 + H20

Derive the rate expression for this mixed-parallel series-reaction network and the expression for the percent selectivity to the epoxide.

# **Course Outcome 4 (CO4):**

1. Reactant A in the liquid phase reacts to produce R and S by the following reactions in parallel:

$$A \rightarrow R$$
  
 $A \rightarrow S$ 

Both these reactions of first order. A feed with  $C_{AO}=1$ ,  $C_{RO}=0$  and  $C_{SO}=0$  enters in two mixed flow reactors ( $\tau 1 = 2 \text{ min}$  and  $\tau 2=5 \text{ min}$ ) the composition within the first reactor is  $C_{A1}=0.40$ ,  $C_{R1}=0.40$  and  $C_{S1}=0.2$  find the composition of exit stream from the second reactor. 2. Reactant A decomposes as follows A-→R A-→S

A- $\rightarrow$ T, the rate equations are: r_R = 1, r_S =2 C_A, r_T = CA². Determine the maximum concentration of desired product that can be obtained in a mixed flow reactor and plug flow reactor for R is the desired product and C_{AO} = 2.

3. In a laboratory, ethanol is esterified to produce ethyl acetate and water at 1 atm according to the reaction

#### CH₃COOH+C₂H₅OH→CH₃COOC₂H₅+H₂O.

What is the equilibrium constant for this reaction at 100 ° C? Find the composition of mixture if initially 1 mole of acetic acid and 1 mole of ethanol were present.

#### **Course Outcome 5 (CO5):**

**1.** The data given below represent a continuous response to a pulse input into a closed vessel which is to be used as a chemical reactor. Calculate the mean residence time of fluid in the vessel and tabulate and construct E curve.

T, min	0	5	10	15	20	25	30	35
C pulse, g/lit.	0	3	5	5	4	2	1	0

**2** Consider an axially-dispersed PFR accomplishing a first-order reaction. Compute the dimensionless concentration profiles for L/dp 5 and 50 and show that at isothermal conditions the values for = 50 are nearly those from a PFR. Assume Pe 2. dp = 0.004 m and k/u =  $25 \text{ m}^{-1}$ .

101101150		L	Т	Р	С			
19UCH50	77 CHEMICAL REACTION ENGINEERING LAB	0	0	3	1.5			
AIM			1					
To provide	To provide real time understanding on basic concepts on various types of reactors							
OBJECTI	VES							
• (	Chemical Engineering lab provides students the first hand experi	ence of	verify	ing var	rious			
tl	neoretical concepts learnt in theory courses.							
• T	o determine experimentally the kinetics and rate constants of re	actions	in dif	ferent ty	ypes			
0	f reactors.							
LIST OF F	EXPERIEMENTS							
<ol> <li>Batch rea</li> <li>Combine</li> <li>Photoche</li> <li>Assessme</li> <li>RTD stud</li> <li>Plug flow</li> <li>Mixed fle</li> <li>Packed b</li> <li>Sono che</li> <li>RTD stud</li> </ol>	<ol> <li>Batch reactor – equimolar constant volume system</li> <li>Combined Flow Reactor analysis</li> <li>Photochemical reactor analysis</li> <li>Assessment of Adiabatic batch reactor performance</li> <li>RTD studies in PFR</li> <li>Plug flow reactor analysis</li> <li>Mixed flow reactor analysis</li> <li>Packed bed reactor analysis</li> <li>Sono chemical reactor analysis</li> <li>Sono chemical reactor analysis</li> <li>RTD studies in MFR</li> </ol>							
		Fotal F	<u>lours</u>		50			
<u>CO1</u>	Coloulate the rate constant experimentally in a botch reactor	BIOON		oluzo				
C01	Calculate the rate constant experimentally in a batch reactor Develop skills to use the right reactor among single	Analyze						
	Develop skills to use the right reactor among single, Create							
CO3	illustrate temperature dependence of rate constant in reactors	Annly						
CO4	Demonstrate the non-ideal behaviour and residence time         Apply							
	distribution in PFR and CSTR.	Thhi						
CO5	Calculate the conversion of reactor arranged in series.	Analyze						
CO6	Calculate the rate constant using sono and photo chemical	Apply						

reactors.

# 19UCH508 MASS T

# MASS TRANSFER LABORATORY

**Total Hours** 

30

# AIM

To determine experimentally certain physical properties of fluids and solids **OBJECTIVES** 

To train the students to develop sound working knowledge on different types of mass transfer equipments.

# TOPICS

# LIST OF EXPERIMENTS

- 1. Verifying the Raleigh's equation for the given system using simple distillation setup.
- 2. Determination of the diffusivity of the given liquid to air
- 3. Verifying the law of vapor pressure in immiscible liquids- steam distillation setup.
- 4. Determination of vaporization efficiency (Ev) and Thermal efficiency (Et) of the given system using steam distillation apparatus.
- 5. Evaluation of drying characteristics for the given sample in tray dryer.
- 6. Determine the percentage recovery in ternary system for three component benzene acetic acid and water.– liquid- liquid extraction.
- 7. Verifying adsorption isotherms by Batch Adsorption tests.
- 8. Determination of height of packed column and theoretical plates for binary system packed bed distillation column.
- 9. Conduction of Simple /Co-current /Counter current Leaching studies.
- 10. Determination of efficiency of the cooling tower.
- 11. Determination of drying characteristics in a rotary dryer.
- 12. Conduction of batch drying test and estimation of the mass transfer coefficient and psychometric Ratio.

# List of Equipments:

- 1. Simple Distillation
- 2. Steam Distillation
- 3. Rotary Dryer
- 4. Liquid-Liquid Extraction Column
- 5. Tray Dryer

6.	Packed Bed Distillation Column
7.	Cooling Tower
8.	Air Diffusion Column
9.	Leaching Studies
10.	Adsorption Studies
11.	Open pan Evaporator
	COURSE OUTCOMES
CO1	Evaluate the performance and design parameters for various distillation operations
CO2	Determine the drying rates of wet solids and to determine the critical moisture & equilibrium moisture content in different regimes of drying.
CO3	Apply the concepts of mass transfer and thermodynamics to design and operation of mass
	transfer experiments
<b>CO4</b>	Estimate the separation efficiency of various mass transfer equipments.

# 19UGS533-Interpersonal Skills Lab

# List of Exercises

# Part - A : Communication and Leadership Projects

# I) Speech Projects

- 1. The Open up Speech (Prepared Speech)
- 2. Speech Organizing to the Point (Prepared Speech)
- 3. Table Topics Speech

# **II) Evaluation Projects**

- 4. Speech Evaluation
- 5. TAG (Timer, Ah Counter and Grammarian) Evaluation

# **III) Leadership Roles**

- 6. Speech Master of the Day
- 7. General Evaluator
- 8. Table Topics Master

# Part - B : Problem-Solving and Decision- Making Project

# **IV) Quality Circle Project**

# **Course Outcomes:**

After the successful completion of the course students will be able to:

- 1. Communicate orally with fluency and clarity in a given contextual situation (Responding Affective Domain)
- 2. Evaluate a speech and offer constructive evaluation of the speech (Evaluating Cognitive Domain)
- 3. Adapt themselves to work in a group as a member or a leader for efficiently executing the given task (Organization Affective Domain)
- 4. Analyze a problem and find appropriate solution (Analyze Cognitive Domain)
- 5. Take decision by organizing relevant information and defining alternatives (Create Cognitive Domain)

6.

19UCH509	CREATIVE THINKING AND INNOVATION	L	Т	Ρ	С
		0	0	2	1

#### PREAMBLE:

Creativity is vital in nearly every industry and occupation. Creativity and innovation are key to generation of new ideas and methods of improving goods and services for customer satisfaction. This course enhances the creative thinking and innovation skills of the students. Being creative helps one to be a better problem solver in all areas of life and work.

# COURSE OBJECTIVES:

- To develop next generation Entrepreneurs and Creative Leaders to resolve live challenges.
- To transform innovative ideas into successful businesses
- To use a range of creative thinking tools to develop Out of the Box Ideas

### **Course Content**

Introduction to Creativity and Innovation- Creative Techniques - Problem Identification through Brain Storming - Solution Identification through Creative Techniques - Presentation on the Innovative Idea - Market Analysis - Revenue and Business Model - Preparation of promotional aids - Customer Feedback Analysis.

Duration	What does the Faculty do?	What do the students do?
Wook 1	Explains creativity and innovation	Team Formation
WOOK 1		(Team Size: 3)
	Explains the Creative Techniques	Discovering Consumer Need through
Week 2	(Through Video / Presentation )	Need Analysis (Customer Segment)
	Eacilitates the brain storming	Problem Identification through brain
Week 3	Facilitates the brain storming	storming
	Eacilitates problem solving	Identify the solution for the chosen problem
Week 4	r acilitates problem solving	through creative techniques
	Evaluates the presentation	Presentation on the Innovative Idea and
Week 5		Value Proposition
	Evaluates the presentation	Presentation on the Innovative Idea and
Week 6		Value Proposition
Week 7	Explains about the Market Research	Market Analysis after the explanation

# List of Activities:

		Total Hours: 30 Perio	ds
Week 10	Facilitates the students work	Improvement through Feedback	
Week 9	Facilitates the students work	Preparing product promotional material	
		Financial Plan	
Week 8	Facilitates the students work	Plan, Business Development Plan and	
		Preparation of Innovation Development	
	Model and Business Model		
	/ Competitor Analysis, Revenue		

# Assessment Pattern

- 1. Internal Assessment: Presentation on the Innovative Idea
- 2. End Semester Assessment:
  - Submission of Business Plan
  - Presentation on My Startup Idea (Evaluator : From Industry)

	19UCH601 CHEMICAL REACTION ENGINEERING II	L	Т	Р	C	
19UCH001		2	1	0	3	

# AIM

To study about heterogeneous reactions and the factors influence the rate of reaction and to design various reactors.

### **OBJECTIVES**

- Development of Kinetic model for Heterogeneous reactions giving emphasis on various types of reactions like non catalytic, catalytic, liquid-liquid reaction, liquid-gas reactions in isothermal, adiabatic or non isothermal conditions.
- Development of design strategy for Heterogeneous reactions considering different types of reactors for example fixed bed tubular reactor, fluidized bed reactor, packed bed reactors etc. Reactor design for reactions operating under isothermal, adiabatic or non-isothermal conditions.

MODUL E	TOPICS	L Hrs
Ι	<b>INTRODUCTION TO HETEROGENOUS REACTIONS AND</b> <b>CATALYTIC REACTIONS</b> Heterogeneous reactions, Rate equation for heterogeneous reactions, Nature of catalysts, determination of surface area and pore volume distribution, general mechanism of solid catalysed fluid phase reactions, adsorption isotherm – rates of adsorption and desorption – surface reaction analysis of rate equation –rate controlling steps, Catalyst preparation methods.	14
п	<b>GAS-SOLID CATALYTIC REACTORS</b> Diffusion within catalyst particles, effective thermal conductivity, mass and heat transfer within catalyst pellets, effectiveness factor, Thiele modulus, Packed bed reactors	9
ш	GAS-SOLID NON CATALYTIC REACTORS Gas solid non catalytic reaction. Reaction kinetics, Shrinking Core Model and Progressive conversion model, Controlling resistances (diffusion through gas film, ash layer and chemical reaction controlling), rate controlling steps; time for Complete Conversion for Single and Mixed Sizes, design of fluid –particle reactors	9
IV	<b>FLUID- FLUID REACTORS</b> Kinetics and design of Fluid- Fluid Reactions. Rate equation, Kinetic regimes for absorption combined with chemical reaction. Various cases of mass transfer with chemical reaction, Factors to select the contactor, Tower Reactor Design.	9
v	<b>FERMENTORS AND CATALYST DEACTIVATION</b> Batch, Plug flow and Mixed flow fermentor, Types of catalyst deactivation – Determining the order of deactivation – Catalyst regeneration methods	4
	Total Hours	45

Text Boo	ks						
1. O. Lev	enspiel, Chemical Reaction Engi	neering, 3rd ed., Wiley Publ	ica	tions, 2	2006.		
Reference	e Books						
1. H.S. F	ogler, Elements of Chemical Rea	ction Engineering, 5 th ed., I	Pre	ntice F	Iall Inc	lia Pvt. Ltd.,	
New Dell	n, 2016.		1	• •	D ·	N XX7'1	
2. G. F Fi	coment, K.B Bischoff and J.D W	ilde, "Chemical Reactor Ana	lys	sis and	Desigi	n", Wiley,	
New Yor	K, 2010	dia o di a la Machine Hill	20	00			
3. J.M. S	5. J.M. Siniui, Chemical Engineering Kinetics, 8 th etc., McGraw-Filit, 2008.						
<u>CO1</u>	Loom fundamentals of haters	comes			<b>BI00</b>	n's Level	
COI	characterization of properties	of optalyst		le	Unde	hor	
<u>CO2</u>	Calculate the design parameter	or catalyst	0			Apply	
02	catalytic reactors and fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-fluid-f	ud reactors	ι,			дрргу	
CO3	Select reactors for industrial of	operation				Analyze	
CO4	Evaluate the effectiveness fac	ctor and Thiele modulus in s	oli	h		Evaluate	
001	catalysed reactions		011				
CO5	Formulate and solve engineer	ing problems associated with	n si	nall-		Create	
	scale and large-scale bioproce	esses					
CO6	Design reactors for heterogen	eous reactions using softwar	e			Apply	
<mark>.</mark>	ourse Outcomes Mapping with	Bloom's Taxonomy and P	roį	gramn	ne Out	comes	
	Course Outcome	Skill	P	Bloo	om's	Assessment	
			C	Taxo	nom	Tools to	
					y	measure CO	
CO1	Learn fundamentals of	Remember/Understand	-	L1/L	2	Exam/Assign	
	heterogeneous reactions and					ment/Seminar	
	determine characterization of					/Quiz	
<u> </u>	properties of catalyst	A 1	D	1.2			
02	Calculate the design	Арріу	P C	L3		Exam/Assign	
	parameters of fluid-solid non-					/Ouiz/Lab/Dro	
	and fluid-fluid reactors		1			/Quiz/Lau/Fio	
CO3	Select reactors for industrial	Analyze	Р	I 4		Fxam/Assign	
005	operation	T mary 20	C	LI		ment/Seminar	
	operation		2			/Ouiz/Lab/Pro	
						ject	
CO4	Evaluate the effectiveness	Evaluate	P	L5		Mini	
	factor and Thiele modulus in		C			Project/Assig	
	solid catalysed reactions		4			nment/Quiz/L	
						ab/Exam	
CO5	Formulate and solve	Create	P	L6		Assignment/L	
	engineering problems		C			ab/Exam/Sem	
	associated with small-scale		3			ınar	
00(	and large-scale bioprocesses	Madam T 1	<b>_</b>	1.2		L -1-/D	
006	Design reactors for	wodern 100ls		L3		Lab/Project	
	software						
		vel Assessment Augstions	5			<u> </u>	
Course	$\frac{1}{1}$	A ASSESSMENT QUESTIONS					
	iscuss in detail about catalyst and	l catalyst components					
<b>I</b> . D	1. Discuss in detail about catalyst and catalyst components.						

- 2. Explain in detail the assumptions and steps followed in BJH Method
- **3.** What are heterogeneous reactions?
- 4. State Eley-Rideal mechanism

# Course Outcome 2 (CO2):

# **1.** The irreversible reaction

 $A(g) + B(s) \longrightarrow R(g)$  .....(first order w.r.t. A)

Takes place on a flat surface. Dilute A diffuses through a stagnant gas film on to a plane surface consisting of B. on the surface, A reacts with B to produce gaseous R which then diffuses back into the main gas stream. Develop the overall rate expression for these gas solid reactions.

**2.** Determine the amount of catalyst needed in a packed bed reactor whose  $v_0=1000$  l/hr with  $C_{AO}=1$ mol/l with  $X_A=0.80$  for a second order reaction with k=2 (l²/g.mol.h).

**3.** Find the time for complete conversion of particle with 2mm dia with conversion of 0.875 for a time of 1 s when the rate controlling step is a chemical reaction

4. The results of the kinetic runs on the reaction  $A \rightarrow R$  made in an experimental packed bed

reactor using a fixed feed rate  $F_{AO}$ = 10 kmol/hr are as follows:

W,Kg catalyst	1	2	3	4	5	6	7
X _A	0.12	0.20	0.27	0.33	0.37	0.41	0.44

i) find the reaction rate at 40% conversion

for a feed rate of 400 kmol/hr to large scale packed bed reactor,

ii)find the amount of catalyst needed for 40% conversion

# Course Outcome 3 (CO3):

**1.** Nitrogen was employed to determine the surface area of 1.0 g sample of silica gel and results obtained shown in table below. The sample of silica gel was maintained at the normal boiling point of liquid nitrogen (77K) .One molecule of nitrogen occupies  $16.2 \times 10^{-20} \text{ m}^2$  area of plane surface. Calculate the specific surface area of silica gel by the BET method. The saturated vapour pressure  $p_0$  of nitrogen at 77 K is 101.3 Kpa.

Equillibrium pressure	5.0	6.3	7.5	9.0	11.2
(Kpa)					
Volume adsorbed	6.7	7.0	7.2	7.4	7.7
$(STP) * 10^{6} (m^{3})$					

**2.** Gaseous reactant A decomposes on a solid catalyst as per the following reaction:  $A \rightarrow R$  with  $-r_A = kC_A^2$  a pilot plant tubular reactor packed with 2 litre of catalyst is fed with 2 m³/hr of pure A at 300°C and 20 atm,65% of A is converted. It is desired to treat 100 m³/hr of feed gas at 40 atm and 300°C consisting of 60 %A and 40% diluents in a large plant to achieve 85% conversion of A. Find the internal volume of the reactor needed.

**3.** Calculate the amount of catalyst needed in a packed bed reactor to achieve 80% conversion of 1000 m³/hr of pure gaseous A ( $C_{AO} = 1000 \text{ mol/m}^3$ )for:

A- $\rightarrow$ R - $r_{A}$ = 50 C_A/(1+0.02 C_A)

4. In a plug flow reactor ,carbon monoxide and hydrogen are passed over nickel catalyst to generate methane

 $CO+3H_2 \leftarrow CH_4 + H_2O$  the rate equation is

 $-r = 1.1 P_{CO} P_{H2} {}^{0.5/}$  (1+1.5 P_{H2}), The reaction is carried out under isothermal conditions at 1 atm.CO and H₂ are fed in stoichiometric proportion with 1 mol/hr of CO. Calculate the amount of catalyst needed to achieve 20 % conversion of CO

# **Course Outcome 4 (CO4):**

1. Spherical particle of zinc sulphide of size R = 1mm are roasted in an 8% oxygen stream at 900°C

and 1 atm. The reaction proceeds according to shrinking core model as

 $2 \operatorname{ZnS} + 2 \operatorname{O}_2 \longrightarrow 2 \operatorname{ZnO} + 2 \operatorname{SO}_2$ 

Using the following data calculate

- i) The time required for complete conversion of a particle.
- ii) The relative resistance of ash layer diffusion.

Data:  $\rho_B = 0.0425 \text{ mol/cm}^3$ ,  $k = 2.2 \text{ cm}^2/\text{s}$ ,  $D = 0.08 \text{ cm}^2/\text{s}$ 

2. Spherical solid particles containing B are roasted at constant temperature in an oven by gas of constant composition. Solids are converted to give a firm non flaking products according to shrinking core model from the following conversion data determine the rate controlling mechanism Data:

dp, mm	X _B	t, s
2	0.875	1
1	1	1

# Course Outcome 5 (CO5):

**1.** Solids of unchanging size (R = 0.3 mm) are reacted with gas in a steady flow laboratory-scale fluidized bed reactor according to the shrinking-core model (SCM) with the reaction steps to be rate controlling. Following result is obtained in the laboratory scale reactor.

For  $F_o = 10 \text{ g/s}$ , W = 1000 g:  $\ddot{X} = 0.75$ .

Design a commercial scale fluidized bed reactor (i.e., Determine W) to treat 4t/h of solids of size R = 0.3 mm to 98% conversion. [1 t = 1000 kg].

**2**. Iron ore of density  $\rho_B = 4.6$  g/cm³ and size R = 5 mm is reduced as per the following reaction by pure hydrogen gas.

 $4H_2 + Fe_3O_4 - \rightarrow 4H_2O + 3Fe$ 

Estimate the time required for 98% conversion of a particle from oxide to metal in a hydrogen environment constant hydrogen pressure of 1 atm. and at  $600^{\circ}$  C

The rate is proportional to the concentration of hydrogen gas.

The first order reaction is rate constant is given by

K" =  $1.93 \times 10^5 e^{-12000/T}$ , cm/s

Hydrogen diffusion coefficient  $D_e = 0.03 \text{ cm}^2/\text{s}$ 

Film diffusion coefficient,  $K_g = 10$  cm/s. At. Wt. : Fe = 56, O = 16.

19UCH6	19UCH602 PROCESS INSTRUMENTATION DYNAMICS AND				С	
	CONTROL	2	1	3	4.5	
	TOPICS	-	-	T	Hrs	
WODULE					1115	
I Motivation to Chemical Process Control, Mathematical description of chemical processes, Formulating Process Models, Laplace Transforms, Properties of Laplace Transforms, Solution of ODE using Laplace Transforms, Standard input forcing functions, State – Space representation, transform domain models, Impulse response models, Inter relationship between process model forms.						
п	II UNIT II Open-loop systems, first order systems and their transient response for standard input functions, first order systems in series, linearization and its application in process control, second order systems and their dynamics; transportation lag, FOPDT Model, Skogestaad's rule for FOPDT and SOPDT Lead-Lag systems					
III	<ul> <li>UNIT III         Closed loop control systems, development of block diagram for feed-back         control systems, servo and regulatory problems, transfer function for         controllers and final control element, principles of pneumatic and electronic         controllers, control valves, transient response of closed-loop control systems         and their stability, Root locus diagram</li> </ul>				9	
IV	IV UNIT IV Introduction to frequency response of closed-loop systems, control system design by frequency response techniques, Bode diagram, stability criterion, tuning of controller settings, Nyquist Stability Criterion				9	
V	UNIT V Introduction to advanced control systems, cascade control, feed forward control, Controllers for Inverse response Smith predictor controller, control of distillation towers and heat exchangers, introduction to computer control				9	
	Tot	tal H	ours	4	45	
	Experiments for Hands on training					
	List Of Experiments <ol> <li>Response of first order system</li> <li>Response of second order system</li> <li>Response of Non-Interacting level System</li> <li>Response of Interacting level System</li> <li>Open loop study on a level system</li> <li>Open loop study on a flow system</li> <li>Closed loop study on a level system</li> <li>Closed loop study on a flow system</li> </ol>					

	11. Tuning of a level system					
	12. Tuning of a flow system					
	13. Tuning of a thermal system					
	14. Flow co-efficient of control valves					
	13. Characteristics of different typ	es of control v	valves			
				Total	Hours	45
Text B	ooks					
1. Step	hanopoulos, G. (1984). Chemical process	<i>control</i> (Vol. 2	2). Nev	v Jersey: Prent	tice hall.	
2. Ogu	nnaike, B. A., & Ray, W. H. (1994). Proce	ess dynamics, r	nodeli	ng, and contro	ol (Vol. 1	).
New Y	ork: Oxford University Press.					
3. Coug	ghanowr, D. R., & Leblanc, S. E. (2009). I	ntroductory co	oncepts	. Process Syst	ems	
Analys	is and Control, 3rd Ed, 1-6.					
Refere	nce Books					
1. Sebo	rg, D. E., Mellichamp, D. A., Edgar, T. F.	, & Doyle III,	F. J. (2	2010). Process	dynamic	28
and cor	ntrol. John Wiley & Sons.					
2. Bequ	iette, B. W. (2003). Process control: model	ling, design, a	nd sim	ulation. Prenti	ce Hall	
Profess	ional.	. – .				
3. Rigg	s, J. B., & Karim, M. N. (2006). Chemical	and Bio-proc	ess Co	ntrol: James B	. Riggs,	M.
Nazmu	I Karim. Prentice Hall.	(1000) <b>D</b>	• 1	. 1	(11 1 40	N NT
4. Luyt	ben, W. L., Tyreus, B. D., &Luyben, M. L.	(1998). Plant	wide p	rocess control	(Vol. 43	). New
Y OFK: I	VICGraw-Hill.	OUTCOMES	1			
On the	course		<b>)</b>			
On the	completion of the course students are expe	ected to	on of a	ah ami a al mua		
COI	prorequisite to proceed design and to control	trol the process	on of a	a chemical pro	cess as a	
CO2	prerequisite to process design and to control the process.					
02	Develop transient models for chemical processes using material and/or energy balance					
	requations by incorporating constitutive relationships and seek their solution using Laplace					
CO3	Represent a physical system using FOPDT model and estimate parameters in FOPDT					
000	model					
CO4	Convert a process and instrumentation diagram to a control block diagram					
CO5	Understand Frequency response of control systems and tune the PID controllers					
CO6	Appreciate the performance augmentation of PID controllers by using advanced control					
	strategies such as Cascade, Feed forward	, Dead time co	mpens	sation		
<b>Course Outcomes</b> Mapping with Bloom's Taxonomy and Programme Outcomes						
	Course Outcome	Skill	PO	Bloom's	Asse	ssment
				Taxonomy	То	ols to
					meas	ure CO
CO1	Understand the need to develop	Remember/	-	L1/L2	Exam/A	Assignme
	mathematical description of a chemical	Understand			nt/Semi	inar/Quiz
	process as a prerequisite to process					
	design and to control the process.					
CO2	Develop transient models for chemical	Apply	PO	L3	Exam/A	Assignme
	processes using material and/or energy		2		nt/Semi	inar/Quiz
	balance equations by incorporating				/Lab/Pr	oject
	constitutive relationships and seek their					
	solution using Laplace Transforms					
CO3	Develop a physical system using	Analyze /	PO	L4	Exam/A	Assignme
	FOPDT model and estimate parameters		3		nt/Semi	inar/Quiz

	in FOPDT model.				/Lab/Project	
CO4	Convert a process and instrumentation	Investigate	PO	L5	Mini	
	diagram to a control block diagram on	/ Modern	2		Project/Assignm	
	MATLAB	Tools			ent/Quiz/Lab/Ex	
					am	
CO5	Analyze and an Evaluate Frequency	Design /	PO	L6	Assignment/Lab	
	response of control systems and tune	Modern	4		/Exam/Seminar	
	the PID controllers by Using Modern	Tools				
	Tools (Like MATLAB, SCiLAB)					
CO6	Appreciate the performance	Evaluate /	PO	L6	Lab/Project	
	augmentation of PID controllers by	Modern	5		-	
	using advanced control strategies such	Tools				
	as Cascade, Feed forward, Dead time					
	compensation					

19UCH603

# PROCESS EQUIPMENT DESIGN

 L
 T
 P
 C

 3
 1
 0
 4

# **Objective:**

To understand and develop skills in the design of processes and equipments in chemical process industries.

MODULE	TOPICS			
Ι	<b>Design of Heat Exchanger:</b> Types of Heat exchanger, Design of Double pipe heat exchanger, Shell and tube heat exchanger, Reboilers and Condensor.	9		
II	<b>Design of mass transfer equipments:</b> Design of Cooling Towers, Dryers, Crystallizers and Evaporators			
III	<b>Design of Separation processes:</b> Design of Absorption Column, Distillation Column and Extraction Column			
IV	<b>Design of Reactors &amp; pressure vessels:</b> Design of Packed bed reactors, Storage vessels for solids, liquids and gases			
V	V Standards and Codes: Design of Plant Layout, BIS & ASTM Standards and Codes, Pipe line design, Materials of construction and selection of process equipments			
VI	VIProcess Hazards and Safety Measures in Equipment Design: Process Hazards, Safety measures, Safety measures in equipment design, Pressure relief devices.			
	Total Hours	45		

### **Text Book(s):**

1. Walas, S. M - Process Equipment Selection and Design - Butterworths - London -1989

2. Coulson J.M., Richardson J.F., Backhurst J.R. and Harker J.M., Sinott, Coulson and Richardson's Chemical Engineering, Volume VI - Butter worth Heinemann - Oxford – 2002(5thEdition)

# **Reference**(s):

1. Perry, R. H - Chemical Engineers' Handbook - McGraw Hill - New York – 1998(7th Edition)

2. Stanley M. Walas, Chemical Process Equipment – Selection and Design, Butterworth Heinemann Publications.

3. M. V. Joshi and V.V. Mahajani , Process Equipment Design, 3rd Edition, Mc Millan India Ltd. 2000

4. Timmerhaus, K. D., Peters, M. S., and West, R. E - Plant Design and Economics for Chemical Engineers - Mc Graw Hill, New York - 2002(5thEdition)

COURSE OUTCOMES					
The stu	dents will have the ability to				
CO1	Ability to understand the concepts involved in design process equipments involved in				
	chemical industry.				
CO2	Ability to understand the materials used in chemical processing industries				
CO3	Ability to apply skills in design of chemical engineering industry equipments.				
<b>CO4</b>	Ability to analyse essential elements involved in chemical engineering process and plants				
CO5	Ability to design process equipments and modify the design of existing equipment to new				
	process				
CO6	Ability to design chemical industry equipment using modern tools				

<b>Course Outcomes</b> Mapping with Bloom's Taxonomy and Programme Outcomes								
				Bloom's	Assessment Tools			
Course	Outcome	Skill	PO	Taxonomy	to measure CO			
CO1	Ability to understand the concepts	Remember/	PO1-	L4	Exam/Assignment/			
	involved in design process	Understand	PO12		Seminar/Quiz			
	equipments involved in chemical							
	industry.							
CO2	Ability to understand the materials	Remember/	PO1-	L4	Exam/Assignment/			
	used in chemical processing	Understand	PO12		Seminar/Quiz/Lab/			
	industries				Project			
CO3	Ability to apply skills in design of	Apply	PO1-	L4	Exam/Assignment/			
	chemical engineering industry		PO12		Seminar/Quiz/Lab/			
	equipments.				Project			
CO4	Ability to analyse essential	Analyse	PO1-	L4	Mini			
	elements involved in chemical		PO12		Project/Assignmen			
	engineering process and plants				t/Quiz/Lab/Exam			
CO5	Ability to design process	Design	PO1-	L4	Assignment/Exam/			
	equipments and modify the design	U U	PO12		Seminar			
	of existing equipment to new							
	process							
CO6	Ability to design chemical	Modern	PO1-	L3	Seminar/Mini			
	industry equipment using modern	Tools	PO12		Project/ Lab			
	tools				5			
1011/211	9UCH606 PROCESS COMPUTATION LABORATORY	L	Т	Р	С			
----------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------	--------	-------	-----	-----	--	--	--
1900	000 PROCESS COMPUTATION LABORATORY	0	0	3	1.5			
AIM								
To apply the knowledge of differential equations of mathematical model for various chemical Engineering system								
OBJEC	TIVES							
	Students will solve chemical engineering problems from core courses usin	ıg C a	nd M	ATL	AB			
program	ming and also using computational tools.							
	TOPICS							
LIST C	F EXPERIMENTS							
1.	Roots of nonlinear equations iterative methods.							
2. Di	rect solution for set of linear equations.							
3. Ite	rative solution for set of linear equations							
4. Re	gression analysis.							
5. Nu	merical integration.							
6. Nu	merical solution of ordinary differential equations.							
7. Pro	edictor and corrector methods							
8. Ra	ting of shell and tube heat exchanger							
9. Ra	ting of Distillation column							
10. Sii	nulation of PFR and CSTR.							
11. Sin	nulation of Recycle Processes.							
	Tot	al H	ours	3	30			
	COURSE OUTCOMES							
CO1	Students are able to mathematical equations of every Chemical Engineering	ng sys	tem.					
CO2	Analyze the model and the equation to get output results and a performance of the system	nalyz	zed t	he				
CO3	Calculate the parameter by simulation using Computational tools							
<b>CO4</b>	Analyze and estimate the chemical engineering problems							

19UCH60	7 TECHNICAL PROJECT AND PRODUCT	TECHNICAL PROJECT AND PRODUCT L		Р	С	
	DEVELOPMENT	0	0	8	4	
AIM To intro product deve	duce the basis of process and product design along with elopment.	h the rec	luiremen	its of a	a good	
OBJECTIV	TES					
<ul> <li>To so</li> <li>To To T</li></ul>	b help students to identify the need for developing newer te cietal needs b help the students to understand the research activities hap	chnologie	es for inc	lustrial e globe		
• T(	b get hands on experience in knowing about various analytic suide students to propose and implement relevant technol	cal instru	ments	anmant	of the	
• IC	ototypes / products	ogy for u	le develo	opmeni	or the	
• To	b) make the students learn to the use the methodologies avai	lable for	analyzin	g the		
de	veloped prototypes / products		•			
MODULE TOPICS						
Ι	<ol> <li>Strategies to identify the societal and industrial problem solved</li> <li>SWOC analysis of the available technologies to overce</li> <li>Possible technology revolution in the next 5 – 10 years</li> <li>Analysis of the problems of present and future</li> <li>Challenges in sustainable prototype / product developm</li> <li>Design of specific workflow in developing the prototype</li> <li>Validation of the developed prototype / product</li> <li>Analysis of the prototype/product with respect to social environmental relevance</li> </ol>	ns that ne ome the p nent oe / produ , econom jects) (Pro	ed to be roblem ct ical, pjects			
	to be done by a group of $3-4$ students)		J			
		Total	Hours	,	75	
	Course Outcomes		Bloom	n's Lev	el	
CO1	Apply the fundamental concept learnt during the theory cosolve industrial problems	ourses to		Apply		
CO2	Review the current status based on the information available the literature or data obtained in the laboratory/ industry	ble in		Apply		

Carry out material and energy balance for process calculations

art of using relevant technology for product development Evaluate the economics of a process through cost estimation

Design equipment for chemical process industries to develop the

Hypothesize industrial problem, design process to carry out the process in an economically feasible way

CO3

**CO4** 

**CO5** 

**CO6** 

Analyze

Apply

Create

Evaluate

## 19UGS632 SOFT SKILLS LABORATORY

## L T P C. 0 0 3 1.5

#### **COURSE OBJECTIVES:**

• To develop a requisite knowledge in Communication skills and Soft skills.

• To enhance the students' acumen in honing the skills to meet the Global changes and Industrial needs.

#### SYLLABUS:-

**Unit I -SPEAKING SKILLS** 9 Hours Conversational Skills - Self Introduction - Group Discussion - Public Speaking - Presentation Skills Unit II – WRITING SKILLS 9 Hours Letter Writing – Report Writing – Email Writing – Job Application – Resume Preparation Unit III - READING AND LISTENING SKILLS 9 Hours Reading Comprehension – Enriching Vocabulary – Error Spotting – Listening and Note Taking Unit IV – SOFTSKILLS 9 Hours Professional Ethics - Interpersonal Skills - Stress Management - Leadership Qualities - Time Management – Conflict Resolution Unit V – INTERVIEW SKILLS 9 Hours Types of Interview – Body Language – Professional Grooming – Basic Etiquette TOTAL:45 (L) = 45 PERIODS

#### **COURSE OUTCOMES:**

After the successful completion of this course, the students will be able to:

CO - 1: Demonstrate oral presentations and fluent speaking through reading and listening. (Apply) CO - 2: Exercise effective reading and comprehension of various articles using enhanced vocabulary.

CO - 3 Attain the ability to write academic papers, essays, official documents and summaries. (Apply)

CO - 4: Apply correct usage of English grammar in writing, fluent speaking and comprehending. (Understand)

CO – 5: Exhibit enhanced performance in interactions and interviews. (Understand)

#### **REFERENCE BOOKS:**

1. Skills for Success, Listening and Speaking – Level 4 by Brooks and Margret – Oxford University Press, Oxford 2011 Edition.

2. Professional Communication by Raman, Meenakshi and Sangeetha Sharma – Oxford University Press, 2014 Edition.

3. Developing Soft Skills by Sherfield, Robert M, R J Montgomery and Patricia G Moody – PearsonEducation Publishers.

#### **19UGM635-INDIAN CONSTITUTION**

Pre-requisites: Nil

#### **Course Objectives:**

- The students will be exposed to fundamental rights & duties in Indian Constitution.
- The students will be given knowledge on the components of the parliamentary system to prepare for the process of their career development.
- The student will have knowledge on powers and functions of Local bodies and Indian polity to appear for various competitive exams such as UPSC, TNPSC and RRB...
- The student will know about the functions of judiciary and electoral process followed in the country.

#### UNIT I INTRODUCTION ON INDIAN CONSTITUTION

Preamble - Salient features of the Constitution of India. Fundamental Rights - its restriction and limitations in different Complex Situations. Directive Principles of State Policy (DPSP) - Fundamental Duties: its Scope and significance in Nation building - Constitution components: schedule, parts and articles of constitution- important Amendments of constitution.

#### UNIT II PARLIAMENTARY SYSTEM

Parliamentary System – parliamentary system of other countries - Indian parliamentary system-Federal System – LS and RS, Centre-State Relations-Election of member of parliaments- Union Executive - President, Prime Minister, Union Cabinet. State Legislature -State Executives –election of MLA- Governor, Chief Minister, State Cabinet.

#### UNIT III JUDICIARY AND ELECTION COMMISSION

Supreme Court of India: Structure, Power and Functions of Supreme Court-- Judicial Reviews - Judicial Activism. High Court and Subordinate Courts: Structure, Power and Functions. – Lok adhalats. Elections- Electoral Process - Election Commission of India -Election Laws – Emergency Provisions - types of Emergencies and its consequences.

#### UNIT IV LOCAL ADMINISTRATION

Local Administration: Powers and functions of Municipalities and Panchayats System-Panchayat Raj- Co-operative Societies and Constitutional and Non-constitutional Bodies.

#### **COURSE OUTCOMES:**

On completion of this course, students will be,

**CO1:** able to apply knowledge of the fundamental rights and duties prescribed by Indian Constitution to prepare for various competitive examinations.

**CO2**: able to manage complex societal issues in society with the knowledge of judiciary and local administration.

**CO3:** able to interpret the societal, health, safety, legal and cultural issues with understanding of parliamentary system and electoral process through self-learning skills.

**CO4:** able to understand the ethical responsibilities of municipalities, panchayats and cooperative societies.

**CO5:** able to understand and distinguish the functioning of the parliamentary system followed in various countries.

#### TEXT BOOKS:

1) Shubham Singles, Charles E. Haries, et al., "Constitution of India and Professional Ethics" by Cengage Learning India Private Limited, 2018.

2) Subhash C. Kashyap,"Our Constitution: An Introduction to India's Constitution and constitutional Law", NBT, 2018.

3) Brij Kishore Sharma, "Introduction to the Constitution of India", PHI Learning Pvt. Ltd.,

New Delhi, 2011.

4) M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.

5) Durga Das Basu, "Introduction to the Constitution on India", Prentice Hall, 2001.

15UME701

# **PROJECT MANAGEMENT AND FINANCE** (Common to CHEM, MECH, CSE, ECE, EEE, IT,)

L	Т	Р	С
3	0	0	3

#### **OBJECTIVES**:

- To impart knowledge to find solutions and approaches for various projects.
- To familiarize the utilization of project within time, resource and financial constraints.

## UNIT I PROJECT MANAGEMENT CONCEPTS

Concept and characteristics of a project, importance of project management, types of project, project organizational structure, project life cycle, Statement of Work, Work Breakdown Structure.

## UNIT II

# PROJECT PLANNING

Project Planning and Scheduling techniques - developing the project network using CPM/PERT, Limitations of CPM/PERT, Precedence Diagramming Method, constructing diagram and computations using precedence diagramming method, PERT/CPM simulation, reducing project duration.

## UNIT

Ш

## **RESOURCE SCHEDULING & CRITICAL CHAIN SCHEDULING**

9

9

9

9

Resource Scheduling - Resource allocation method, splitting and multitasking, Multi project resources scheduling - Critical Chain Scheduling -Concept of critical chain scheduling - critical chain scheduling method, application of Critical chain scheduling and limitations.

## UNIT IV

## PROJECT QUALITY MANAGEMENT

Concept of project quality, responsibility for quality in projects, quality management at different stages of project, tools and techniques, Quality Management Systems, TQM in projects - Project Performance Measurement and Control - Monitor and assess project performance, schedule, and cost. Earned Value Management, performance measurement methods to monitor, evaluate and control planned cost and schedule performance - Project Closure/ Termination - Meaning of closure/ termination, project audit process, termination steps, final closure.

## UNIT V FINANCIAL ACCOUNTING

Balance sheet and related concepts - Profit & Loss Statement and related concepts - Financial Ratio Analysis - Cash flow analysis - Funds flow analysis – Comparative financial statements. Investments - Average rate of return - Payback Period - Net Present Value -Internal rate of return.

9

#### **COURSE OUTCOMES:**

After successful completion of this course the students will be able to:

- 1. Analyze different types of projects and identify the suitable project for the given constraints. (Analyze)
- 2. Analyze and identify Critical Path using PERT/CPM for the given project. (Analyze)
- 3. Analyze Theory of Constraints, Multi project scheduling and heuristic methods for allocating resources to a project. (Analyze)
- 4. Apply the knowledge of Quality Management and TQM Concepts to different stages of project and design a suitable Quality Management System. (Apply)
- 5. Investigate the financial data such as balance sheet, income expenditure statement, cash flow statement and budget to interpret, synthesize to provide valid solution for a variety of business problems. (Analyze)

#### **TEXT BOOKS:**

- 1. Prasanna Chandra, "'Fundamentals of Financial Management' ", Tata Mcgraw-Hill Publishing Ltd, 2005.
- 2. Jack Meredith, Samuel J.Mantel, "Project Management- A Managerial Approach", John Wiley and Sons.

#### **REFERENCE BOOKS:**

- 1. Clifford F Gray, Erik W Larson, "Project Management-The Managerial Process", Tata Mcgraw-Hill Publishing Co Ltd.
- 2. John M Nicholas, "Project Management For Business And Technology", Prentice Hall of India Pvt Ltd.
- 3. Paresh Shah, "Basic Financial Accounting for Management", Oxford University Press, 2007.

## **COURSE ARTICULATION MATRIX:**

#### **CO/PO/PSO MAPPING**

CO	POs										PSO			
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO.1	3								3	3	3	3		
CO.2	3	3				3					3			
CO.3	3	3			3						3		3	
<b>CO.4</b>	3										3			3
CO.5	3	3		3							3	3		

Subject	POs									PS		<b>50</b>		
Bubject	1	2	3	4	5	6	7	8	9	10	11	12	1	2
15UME701	3	3		3	3	3			3	3	3	3	3	3
Ref: 3 - Strong		2 - N	lediu	m		1 - V	Veak							

	10UCH701 TRANSPORT PHENOMENA		Т	Р	C			
	190CH/01 IRANSPORT PHENOMENA	3	0	0	3			
<ul> <li>AIM         To analyze the movement of different physical quantities such as momentum, energy and m any chemical or mechanical process and combines the basic principles (conservation laws) and of various types of transport.     </li> <li>OBJECTIVES         These transport phenomena occur frequently and most of the time simultaneously in induproblems. All type of transport phenomena can be explained by similar transport and convolates. Physical properties which are used to describe transport laws like kinematic viscosity, the diffusivity or mass diffusivity play similar role. The mathematical requirements for solving prorelated to transport phenomena are more or less similar.     </li> </ul>								
UNIT	TOPICS				L Hrs			
INTRODUCTION TO TRANSPORT PHENOMENA Classification of Transport Processes, Conservation Laws, Vector and Tensor Calculus, Fundamental concepts in momentum transfer, shell balance, governing equations and relevant boundary conditions.					7			
IIMOMENTUM TRANSFER PHENOMENAIIShell balance and boundary conditions; Momentum flux and velocity distribution in flow of a falling film, flow through circular tube, Hagen poiseuille law, flow through an annulus and adjacent flow of two immiscible fluids. Time derivatives and vector notation, Equation of continuity, Equation of Motion, Navier- stokes equation.					11			
III       HEAT TRANSFER PHENOMENA         Fourier's law of heat conduction, Analogy between heat and momentum transfer, Shell heat balance and boundary conditions to heat transport, Heat Conduction with Electrical heat source, Heat conduction with Nuclear heat source and Viscous Heat Sources; Heat Conduction – Composite Walls and Cooling Fin and effectiveness of Fin: Forced and Free Convection								
IV	<ul> <li>MASS TRANSFER PHENOMENA         <ul> <li>Fick's law of diffusion, Definitions of concentrations, velocities and mass fluxes. Boundary conditions in mass transfer, Diffusion – Stagnant Gas Film, Heterogeneous and Homogeneous Chemical Reactions, Falling Liquid Film (Gas Absorption), Film theory, Penetration theory, Boundary layer theory, Macroscopic balance to solve steady and Unsteady state problems</li> </ul> </li> </ul>							
V	ANALOGIES & SIMILITUDE ANALYSES WITH APPLIC Mathematical treatment of the similarities between momentum transfer, similarity parameters, and relevant analogies coupled heat, mass and momentum transfer problems based on ar model, Dynamic similarity, Equation of change for entropy; Appl generalized Maxwell – Stephan's equations; Mass transport across permeable membrane and porous media	ATION heat, m s, Soluti nalogy, lication ss select	NS ass and on of capillary of ively	tube	9			
			Total H	ours	45			

Course Outcomes	Bloom's Level
On the completion of the course students are expected to	

CO1	Understand and relate transport proper	ties of mol	lecular transfe	er of	Remember /
COI	momentum, energy and mass transport.				Understand
COL	Solve and physically interpret one-dime	nsional stea	dy state		Analyze
02	momentum transfer, heat conduction and	d species dif	ffusion proble	ms	
CO2	Make use of Navier-Stoke's equation with	ith right bou	indary condition	ons	Evoluoto
COS	to examine the problems related to fluid	, heat and m	ass transfer		Evaluate
CO4	Evaluate the interphase transport proper	ties for inter	rnal flow and		Analyza
CO4	external flow and estimate powere that r	equired for	fluid flow		Anaryze
CO5	simultaneous heat, mass and momentum	transfer an	alysis		Apply
CO6	Investigate and solve industrial problem	ns along wit	h appropriate		Evoluoto
	approximations and boundary condition		Evaluate		
Course	• Outcomes Mapping with Bloom's Tax	onomy and	Programme	Outcome	es
	Course Outcome	C1-31	DO	Dlaam!	A ago ago o o o 4
	Course Outcome	ЭКШ	ro	DIOOIII	Tools to
				Taxono	measure CO
				my	
CO1	Understand and relate transport	Rememb	-	L1/L2	Exam/Assignme
	properties of molecular transfer of	er /			nt/Seminar/Quiz
	momentum, energy and mass	Understa			
	transport.	nd			
CO2	Solve and physically interpret one-	Analyze	PO2	L3	Exam/Assignme
	dimensional steady state momentum				nt/Seminar/Quiz
	transfer, heat conduction and species				/Lab/Project
	diffusion problems				
CO3	Make use of Navier-Stoke's equation		PO4	L5	Exam/Assignme
	with right boundary conditions to	Evoluoto			nt/Seminar/Quiz
	examine the problems related to fluid,	Evaluate			/Lab/Project
	heat and mass transfer				
CO4	Evaluate the interphase transport		PO4	L3	Mini
	properties for internal flow and	Analyze			Project/Assignm
	external flow and estimate powere that	Anaryze			ent/Quiz/Lab/Ex
	required for fluid flow				am
CO5	simultaneous heat, mass and	Apply	PO1	L4	Assignment/Lab
	momentum transfer analysis	Аррту			/Exam/Seminar
CO6	Investigate and solve industrial		PO4	L5	Lab/Project
	problems along with appropriate	Evolution			
	approximations and boundary	Evaluate			
	conditions				
	1	I	<u> </u>		1
Text B	ooks				
1. D Bi	rd R. B, Stewart W.E., Lightfoot E.W., 'T	ransport Ph	enomena', Joh	ın Wiley,	2ndEd., 2000.
2. Brod	lkey R. S., Hershey H. C., 'Transport Pher	nomena', Mo	cGraw-Hill In	ternationa	l Edition, 1988.

3. Wilty J.R., Wilson R.W., Wicks C.W., 'Fundamentals of Momentum, Heat and Mass Trasport', 2nd

Ed., John Wiley, New York, 1973.

#### **Reference Books**

1. Wilty J.R., Wilson R.W., Wicks C.W., 'Fundamentals of Momentum, Heat and Mass Trasport', 2nd Ed., John Wiley, New York, 1973.

2. R.W.Fahien, "Elementary Transport Phenomena", McGraw-Hill, New York, 1983.

3. J.R.Welty., R.W Wilson and C.W wicks, Roger.G.E., Wilson R.W, Fundamental of Momentum, Heat and Mass Transfer V th edn, John Wiley, New York, 2007.

19UCH702 PROCESS MODELING AND SIMULATION L T							
		3	2	0	4		
Aim		I					
Understanding the fundamental of modeling and simulation, system analysis and evaluation.							
Objective							
To understa	nd the basics of model construction.						
To learn about solving model equations and validation of the models.							
MODULE	TOPICS			L	Hrs		
I UNIT INTRODUCTION Introduction to modeling and simulation, classification of mathematical models, conservation equations and auxiliary relations.							
IIUNIT II STEADY STATE LUMPED SYSTEMS Degree of freedom analysis, single and network of process units, systems yielding linear and nonlinear algebraic equations, flowsheeting – sequential modular and equation oriented approach, tearing, partitioning and precedence ordering, solution of linear and non-linear algebraic equations.							
IIIUNIT III UNSTEADY STATE LUMPED SYSTEMSAnalysis of liquid level tank, gravity flow tank, jacketed stirred tank heater, reactors, flash and distillation column, solution of ODE initial value problems, matrix differential equations, simulation of closed loop systems							
IVUNIT IV STEADY STATE DISTRIBUTED SYSTEM Analysis of compressible flow, heat exchanger, packed columns, plug flow reactor, solution of ODE boundary value problems.					12		
V	VUNIT V UNSTEADY STATE DISTRIBUTED SYSTEM Analysis laminar flow in pipe, sedimentation, boundary layer flow, conduction, heat exchanger, heat transfer in packed bed, diffusion, packed bed adsorption, plug flow reactor, hierarchy in model development, classification and solution of partial differential equations - Empirical modeling, parameter estimation, population balance and stochastic						
	Tot	al H	ours	6	<b>50</b>		
Total Hours         Text Books         1. Franks, R. G. E., "Mathematical Modelling in Chemical Engineering", John Wiley, 1967.         2. Luyben, W.L., "Process Modelling Simulation and Control", McGraw-Hill Book Co.,1973.         3. Reference Books         1. Felder, R. M. and Rousseau, R. W., "Elementary Principles of Chemical Processes", John 2000.							
2000.	v., Computational Methods in Process Simulation, 2nd Edn., Butter	worth	s, mev	v 10	1K,		
	COURSE OUTCOMES						
On the com	pletion of the course students are expected to						
CO1 Une	derstand the need to develop mathematical description of a chemical process design and to control the process	proces	s as a				
CO2 Dev	zelop transient models for chemical processes using material and/or en	iergy	balan	ce			
equ	ations by incorporating constitutive relationships		Jului				

	_				
CO3	Represent a process system using model	and estimate p	oarame	ters in simulat	ion model.
<b>CO4</b>	Construct a process and instrumentation	diagram to a p	rocess	system.	
CO5	Analyze the systems of lumped and distr	ibuted systems	5.		
CO6	Develop a empirical modeling population	n and paramete	ers in s	tochastic mod	elling
Course	<mark>e Outcomes</mark> Mapping with Bloom's Taxo	onomy and Pr	ogran	nme Outcome	2S
	<b>Course Outcome</b>	Skill	PO	Bloom's	Assessment
				Taxonomy	Tools to
					measure CO
CO1	Understand the need to develop	Remember/	-	L1/L2	Exam/Assignme
	mathematical description of a chemical	Understand			nt/Seminar/Quiz
	process as a prerequisite to process				/ lab
	design and to control the process.				
CO2	Develop transient models for chemical	Apply	PO	L3	Exam/Assignme
	processes using material and/or energy		2		nt/Seminar/Quiz
	balance equations by incorporating				/Lab/Project
GOA	constitutive relationships		DO	<b>T</b> 4	
CO3	Represent a process system using	Analyze /	PO	L4	Exam/Assignme
	model and estimate parameters in		3		nt/Seminar/Quiz
004	simulation model.	T (	DO	T. 7	/Lab/Project
CO4	Construct a process and	Investigate	PO	LS	
	instrumentation diagram to a process	/ Modern	2		Project/Assignm
	system.	10015			ent/Quiz/Lab/Ex
COF	Analyza the systems of lymned and	Design /	DO	IC	alli Aggionmont/Lab
05	distributed systems	Design /	PO	LO	Assignment/Lab
	distributed systems.	Toolo	4		/Exam/Semmar
<u>CO(</u>	Develop a ampirical modeling	TOOIS	DO	IC	Lab/Drainat
	Develop a empirical modeling	Evaluate /	PO 5	LO	Lab/Project
	modelling	Tools	5		
				<u> </u>	
	Course Level As	sessment Que	estions		

101101	1707 Drocoss Design and Simulation Laboratory	L T 1 0 0 2	Р	С	
19001	1707 Process Design and Simulation Laboratory	0	0	3	1.5
AIM To app various OBJE	y the knowledge of differential equations and Formulation of a mathematic chemical Engineering system CTIVES	cal mo	odel f	or	
To train fundam mathen	the students to an understand and apply the mass/ heat and chemical react ental principles and law of modelling in various chemical engineering syst natical model.	ion er ems to	ngine o dev	ering elop	
	TOPICS				
LIST (	OF EXPERIMENTS				
1.	Composition of vapor and liquid streams in a flash distillation still using V	ΊLΕ da	nta		
2. C	omputation of ideal number of places using optimal reflux ratio.				
3. M	aterial balance/enthalpy balance in the plate columns.				
4. M	ulticomponent distillation with reboiler and condenser				
5. St	udy of absorption, reaction and diffusion processes in a contact reactor/but	ble al	bsorb	er/pa	cked
to	wer/plate column through a two film model.				
6. D	esign and optimization of single effect evaporator.				
7. D	esign and optimization of multiple effect evaporator.				
8. D	esign of a shell and tube heat exchanger				
9. Si	mulation of developing flow in a pipe				
10. Si	mulation of cumene production process				
11. Si	mulation of ammonia synthesis				
12. M	anufacture of vinyl chloride monomer and hydrodealkylation.				
	Tot	tal H	ours		30
				1	
	COURSE OUTCOMES				
CO1	Students are able to model every Chemical Engineering system assigned	to the	n.		
CO2	Analyze the model and the equation to get output results and a	nalyz	zed t	he	
<b>CO3</b>	Calculate the parameter of by simulation using Process Simulator				
<b>CO4</b>	Analyse and estimate the physical properties of data bank and non data ba	ank co	mpor	nents	

# **OPEN ELECTIVE**

19UCH951 CORROSION	CODDOSION SCIENCE & ENCINEEDING	L	Т	Р	C
	CORROSION SCIENCE & ENGINEERING	3	0	0	3

# AIM

To have an insight into all aspects of corrosion and testing methods.

## **OBJECTIVE:**

To gain knowledge in different types of corrosion and its testing methods, various methods of protection, corrosion in specific environment and the corrosion protection management and testing methods.

MODULE	TOPICS	L Hrs
I	BASIC ASPECTS OF CORROSION Introduction, classification, economics, emf series, Galvanic series. Corrosion theories: derivation of potential – current relationships of activation controlled and diffusion controlled corrosion processes. Potential – pH diagrams Fe-H2O system, application and limitations. Passivation- definition, anodic passivation theory of Passivation.	9
П	Corrosion inhibitors, Electroplated coatings, Conversion coatings, Anodizing, Hot dipping, Spray metal coatings, Zinc coating by alloying, Electrophoteric coatings and electro painting, Powder coating. Corrosion minimization by material selection. Cathodic and Anodic protections	9
III	<b>CORROSION IN SPECIFIC ENVIRONMENTS:</b> Corrosion by organic acids and alkalies. Seawater and Fresh water corrosion on concrete structures, Corrosion in automobiles, Biological corrosion, Halogen corrosion of metals, Corrosion in Petroleum industry, Corrosion in aerospace. Corrosion damage to concrete in industrial and marine environments environmental degradation of materials, corrosion and inspection managements in chemical processing and petrochemical industries.	9
IV	<b>CORROSION CONTROL METHODS</b> Forms of corrosion - Definition, factors and control methods of various forms of corrosion such as pitting, inter granular, crevice, dezincification, stress corrosion, corrosion fatigue, fretting corrosion, hydrogen embitterment, corrosion processes and control methods in fertilizers, petrochemical, chemical building industries	9

		CORROSION TEST & IMPACTS ON ECONOMY	
		Corrosion testing. Electrochemical methods of corrosion rate measurements	
		by DC and AC methods corrosion monitoring methods chemical and	
		by DC and AC methods, correston monitoring methods, chemical and	
v	7	electrochemical removal of corrosion products, newer techniques to study	9
		corrosion processes, inspection methods by NDT. Surface analytical	
		techniques such as AES, ESCA, SEM.	
		Corrosion protection management – Process maintenance procedures under	
		corrosion Environments.	
		Total Hours	45
Text B	ooks		
1.	Fontan	a M.G., —Corrosion Engineering, Tata McGraw Hill, 2005.	
2	Roberg	e P. R. Corrosion Engineering McGraw Hill New York 2008	
Z. Refere	nce Ro	oks	
	Ince Do	DA Principal and Protection of Correction Provides Hell 1006	
1.	Jones	D.A., —Principal and Protection of Corrosion, Prentice-Hall, 1996.	- · ·
2.	Sastri Solutio	V.S., Ghali E. And Elboujdaini M., —Corrosion Prevention and Protection: onsl, John Wiley and Sons, 2007.	Practical
3.	Banari	ee.S.N., An introduction to corrosion and corrosion inhibitors, Oxonian Press L	.td., New
	Delhi.	1985.	,
	2 0,	COURSE OUTCOMES	
The stu	idents h	ave the	
CO1	Abilit	y to classify the different types of corrosion and theories in a specific environm	nent.
CO2	Abilit	y to apply the principles of corrosion inhibition and corrosion control methods	
		y to appry the principles of contosion minibition and contosion control methods.	
COS	ADIIII	y to examine the factors involved in corrosion and control methods of various	
CO4	Abilit	ty to defend the suitable corrosion control methods in different type of industrie	s.
CO5	Abilit	y to construct a corrosion free environment by selecting proper monitoring and	
000	inspe	ction tests.	
		Course Outcome Assessment Questions	
C	0-4-		
Cours	e Outco	ome I (COI)	
1.	Disting	guish chemical and electrochemical corrosion.	
2.	Discus	s briefly the different types of corrosion.	
) J.	Exami Diffor	ne me pri diagram for re-ri20 systems.	
4.	Differe	an avample for galvanic corresion	
Cours	• Outer	$\frac{2}{(CO2)}$	
	Discus	s the different types of protective coatings	
1.	Howe	an we minimize the corrosion by material selection?	
2.	Exami	ne the electronlating method of corrosion protection	
3. 4	What i	s spray metal coating?	
5	Design	a suitable method for corrosion prevention in a process industry	
Cours	e Outco	me 3 (CO3)	
1	Demoi	strate briefly about the corrosion inhibition and protection in marine environm	ent.
2.	Explai	n in detail about the corrosion and protection in concrete structures.	
3.	What i	s biological corrosion and explain with suitable examples?	
4.	Exami	ne the corrosion happening areas in a petrochemical industry.	
5.	Disting	guish biological and halogen corrosion	
Cours	e Outco	ome 4 (CO4)	
1.	Sketch	a corrosion fatigue diagram and explain it briefly.	

- 2. Discuss briefly about corrosion protection and management in a process industry.
- 3. What are the different types of forms of corrosion explain briefly.
- 4. Examine the corrosion control method in a fertilizer industry.
- 5. Discuss briefly about hydrogen embrittlement.

# **Course Outcome 5 (CO5)**

- 1. Discuss briefly about electrochemical removal of corrosion.
- 2. Differentiate DC & AC methods of measurement of corrosion.
- 3. Explain in detail the process maintenance procedures under corrosion environments.
- 4. What is NDT method explains briefly.
- 5. How corrosion affects the nation's economy?

Course Outcomes	Skill	РО	Blooms	Assessing tools
Ability to classify the different types	Remember/Understan	PO10	L1/L2	Assignment/Exa
of corrosion and theories in a specific	d			m/ Quiz/
environment.				Seminar
Ability to apply the principles of	Apply	PO1	L3	Assignment/
corrosion inhibition and corrosion				Exam/ Quiz
control methods.				
Ability to examine the factors	Analyse	PO3,	L4	Assignment/
involved in corrosion and control		PO4,		Exam/ Quiz
methods of various industries		PO7		
Ability to defend the suitable	Investigation	PO3,	L5	Exam/
corrosion control methods in		PO4,		Quiz/Assignme
different type of industries.		PO7		nt/Seminar
Ability to construct a corrosion free	Design	PO11,	L6	Assignment/Exa
environment by selecting proper				m/Seminar/
monitoring and inspection tests.				Project

19	UCH95	2 ENERGY STORAGE SYSTEM	L	Т	Р	С
OBJE The co	CCTIVE ourse is	$\mathbf{S}$ aimed to integral research, development, implementation and integration of	2	1	0	2
energy	y-storag	e technologies to optimise the energy efficiency of all kinds of	4	T	U	5
MOI					LF	Irs
I A INTRODUCTION Necessity of energy storage, different types of energy storage, mechanical, chemical, electrical, electrochemical, biological, magnetic, electromagnetic, thermal, comparison of energy storage technologies.					9	)
II A ENERGY STORAGE SYSTEMS Thermal Energy storage, sensible and latent heat, phase change materials, Energy analysis of thermal energy storage, Electrical Energy storage-super- capacitors, Magnetic Energy storage-Superconducting systems, Mechanical-Pumped hydro, flywheels and pressurized air energy storage, Chemical-Hydrogen production and storage, Principle of direct energy conversion using fuel cells, thermodynamics of fuel cells, Types of fuel cells,Microbial fuel cell, Fuel cell performance, Electrochemical Energy Storage- Battery, primary, secondary and flow batteries.				9	)	
IIIDesign and Applications of Energy Storage Renewable energy storage-Battery sizing and stand-alone applications, stationary (Power Grid application), Small scale application-Portable storage systems and medical devices, Mobile storage Applications- Electric vehicles (EVs), types of EVs, batteries and fuel cells, future technologies, hybrid systems for energy storage.				9	)	
IVAENERGY BALANCE Energy Balance & MIS First law of efficiency and Second law of efficiency, Facility as an Energy system, Methods for preparing process flow, Materials and Energy Balance diagram, Identification of losses, Improvements. Energy Balance sheet and Management Information System (MIS) ,Energy Modeling and Optimization.			9	,		
v	A	<b>ENERGY AUDIT</b> Energy Audit Instruments,Instruments for Audit and Monitoring E and Energy Savings, Types of instruments and Accuracy.	Energy	7	9	)
		Tot	al H	ours	4	5
Text I	Books ergy Sto	orage - Technologies and Applications by Ahmed Faheem Zobaa, In	Tech.			

2. Fundamentals of Energy Storage by J. Jensen and B. Sorenson, Wiley-Interscience, New York,

3. Handbook of battery materials by C. Daniel, J. O. Besenhard, Wiley VCH Verlag GmbH & Co. KgaA

4. Electric & Hybrid Vehicles by G. Pistoia, Elsevier B. V.

5. Thermal energy storage: Systems and Applications by Dincer I. and Rosen M. A., Wiley pub

## **Reference Books**

1. Energy Storage: Fundmentals, Materials and Applications, by Huggins R. A., Springer

2. Fuel cell Fundamentals by R. O'Hayre, S. Cha, W. Colella and F. B. Prinz, Wiley Pub.

3. Chemical and Electrochemical Energy System by R. Narayan and B. Viswanathan, University Press.

4. Battery Systems Engineering by C. D. Rahn and C. Wang, Wiley Pub.

5. Electrochemical Energy Storage for Renewable sources and grid balancing by P. T. Moseley and J. Garche, Elsevier Science.

6. Compressed air energy storage by F. P. Miller, A. F. Vandome, M. B. John, VDM publishing COURSE OUTCOMES

The stu	idents have the						
<b>CO1</b>	Ability to understand need of energy stor	rage systems.					
CO2	Ability to evaluate the acquire knowledge pertaining to various ways to store energy, its and						
	use.						
CO3	Ability to ascertain and analyze focus de	velop hydroge	n storag	ge fuel cell sy	stems though		
	research.						
<u>CO4</u>	Ability to choose design obtain knowled	a about anara	v polic	v regulations	& husiness		
0.04	practices	ge about energ	y pone	y, regulations	a business		
CO5	Ability to select & investigate obtain know	owledge on the	energy	v balance shee	ets & management		
	information system.	U	05		U		
CO6	Ability to conduct experiments using mo	dern tools.					
Course	<mark>e Outcomes</mark> Mapping with Bloom's Taxo	onomy and Pr	ogram	me Outcome	S		
	<b>Course Outcome</b>	Skill	PO	Bloom's	Assessment		
				Taxonom	Tools to		
				У	measure CO		
CO1	Ability to understand need of energy	Remember/	-	L1/L2	Exam/Assignme		
	storage systems.	Understand			nt/Seminar/Quiz		
CO2	Ability to evaluate the acquire	Evaluate	PO4	L5	Exam/Assignme		
	knowledge pertaining to various ways				nt/Seminar/Quiz		
	to store energy, its and use.				/Lab/Project		
CO3	Ability to ascertain and analyze focus	Analyze	PO2	L4	Exam/Assignme		
	develop hydrogen storage fuel cell				nt/Seminar/Quiz		
	systems though research.				/Lab/Project		
CO4	Ability to choose design obtain	Design	PO3	L6	Mini		
	knowledge about energy policy,				Project/Assignm		
	regulations & business practices.				ent/Quiz/Lab/Ex		
~~~					am		
4 3 4 S F		I larrachi acha		115	Acciemment/Loh		

	knowledge on the energy balance				/Exam/Seminar
	sheets & management information				
	system.				
CO6	Ability to conduct experiments using	Modern	PO5	L3	Lab/Project
	modern tools.	Tools			
	Course Level As	sessment Que	estions		
Cou	rse Outcome 1 (CO1):				
1.	Write a note on importance of Energy Stora	nge?			
2.	Explain the principle of Necessity of energy	y storage.			
3.	With a neat sketch, explain the different typ	es of energy s	torage.		
4.	Distinguish between the importance of ener	rgy storage tec	hnolog	ies.	
Cou	rse Outcome 2 (CO2):				
1.	Evaluate the Energy analysis of thermal energy	rgy storage.			
2.	Derive an expression of most efficient way	to store energy	y?		
3.	Explain how will you find out the Electrical	Energy storag	ge.		
4.	Discuss in detail about the Magnetic Energy	v storage-Supe	rcondu	cting systems	5.
Cou	rse Outcome 3 (CO3):				
1.	Analyze the hybrid systems for energy stor	age.			
2.	Find out the types of electrical energy stora	ge system.			
3.	Illustrate the measure of batteries and fuel of	cells.			
4.	Explain in detail about the principle of Mol	oile storage Ap	oplicati	ons.	
Cou	rse Outcome 4 (CO4):				
1.	Design a Materials and Energy Balance dia	gram.			
2.	Elaborate a Principles of Energy Balance sl	neet and Mana	igemen	t Information	System.
3.	Discuss about the different types of Energy	Balance Shee	ets?		
4.	With a neat sketch explain about the Energy	y Modeling an	id Optii	mization.	
Cou	rse Outcome 5 (CO5):				
1.	Find out the Instruments for Audit at Energy	y Storage Syst	tem.		
2.	How to obtain the Monitoring Energy storage	ge system.	~	~	
3.	Explain in detail about the Types of instrum	ents using En	ergy St	orage System	1.
4.	Discuss in detail about the Energy Savings.				

101/СН053	Industrial Waste Management	L	Т	P	C	
170011755	industrial () aste management		0	0	3	
Objective:			1		<u> </u>	
To impart knowledge on sources and characteristics of various industrial wastes and sta						
for its prevent	tion and control					
MODULE	TOPICS			L (Hrs)	
I	INTRODUCTION Types of industries and industrial pollution, Characteristics of wastes, Population equivalent, Bioassay studies, effects of effluents on streams, sewer, land, sewage treatment plants and hur ,Environmental legislations related to prevention and control of effluents and hazardous wastes	indus indus nan he indus	strial strial ealth strial		9	
П	CLEANER PRODUCTION Waste management Approach, Waste Audit, Volume and reduction, Material and process modifications, Recycle, reuse ar recovery, Applications.	stre	ngth duct		9	
III	POLLUTION FROM MAJOR INDUSTRIES Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants Wastewater reclamation concepts				9	
IV	TREATMENT TECHNOLOGIES Equalisation, Neutralisation, Removal of suspended and dissolved solids, Chemical oxidation, Adsorption, Removal of dissolved i Combined treatment of industrial and municipal wastes, management, Dewatering, Disposal	ed org norga Resi	ganic nics, idue,		9	
V	HAZARDOUS WASTE MANAGEMENT Hazardous wastes, Physico chemical treatment, solidification, inci Secure land fills	nerati	on,	-	9	
VI		tal U	01120		15	
		ial fi	ours	-	+3	

Text Books

- 1. M.N.Rao & A.K.Dutta, "Wastewater Treatment", Oxford IBH Publication, 1995.
- 2. W .W. Eckenfelder Jr., "Industrial Water Pollution Control", McGraw-Hill Book Company, New Delhi, 2000.
- 3. Patwardhan. A.D., Industrial Wastewater Treatment", Prentice Hall of India, New Delhi 2010.

Reference Books:

- 1. T.T.Shen, "Industrial Pollution Prevention", Springer, 1999.
- 2. R.L.Stephenson and J.B.Blackburn, Jr., "Industrial Wastewater Systems Hand book", Lewis Publisher, New Yark, 1998
- 3. H.M.Freeman, "Industrial Pollution Prevention Hand Book", McGraw-Hill Inc., New Delhi, 1995.
- 4. Bishop, P.L., "Pollution Prevention: Fundamental & Practice", McGraw Hill, 2000.
- 5. Pandey, "Environmental Management" Vikas Publications, 2010.
- 6. Industrial Wastewater Management, Treatment and Disposal",(WEF MOP FD3) McGraw Hill, 2008.

COURSE OUTCOMES

The students will have the						
CO1	Ability to understand the basic concepts and sources of industrial wastes and the need for					
	industrial waste management					
CO2	Ability to identify and classify waste in industries					
CO3	Ability to investigate and analyse the	waste and its p	reventi	on techniques		
CO4	Ability to apply different methodolo	gies to predic	ct and	assess the imp	pacts of project on	
	various aspects of industrial wastes.					
CO5	Ability to apply the knowledge in inve	estigating deve	lopmen	its in waste ma	anagement	
Course	<mark>e Outcomes</mark> Mapping with Bloom's Ta	axonomy and	Progra	mme Outcon	ies	
Course	e Outcome	Skill	РО	Bloom's Taxonomy	Assessment Tools to measure CO	
CO1	Ability to understand the basic concepts and sources of industrial wastes and the need for industrial waste management	Remember/ Understand	PO1, PO6, PO7	L1/L2	Exam/Assignment /Seminar/Quiz	
CO2	Ability to identify and classify waste in industries	Apply	PO1, PO5, PO6	L3	Exam/Assignment /Seminar/Quiz/La b/Project	
CO3	Ability to investigate and analyse the waste and its prevention techniques	Analyze	PO1, PO2, PO3	L4	Exam/Assignment /Seminar/Quiz/La b/Project	
CO4	Ability to apply different methodologies to predict and assess the impacts of project on various aspects of industrial wastes.	Investigate	PO2, PO3, PO7,	L5	Mini Project/Assignme nt/Quiz/Lab/Exam	
CO5	Ability to apply the knowledge in investigating developments in waste management	Investigate	PO2, PO3, PO4, PO9	L5	Assignment/Exam /Seminar	
CO6	Ability to devising safety policy and procedures to be adopted to implement total safety in a plant	Design	PO5, PO7	L6	Seminar/Mini Project/ Lab	

10ΠCH054 - WASTE ΤΟ ΕΝΕΡΟΎ CONVERSION		L	Т	Р	С
1900			0	3	3
AIM To movi	de en un densten din e of the nonione concete of Weste to Fra				
	The various aspects of waste to Energy various aspe	rgy.			
The obie	ctive of the course is to provide insights into waste manage	ement opt	ions by	reducing	g the
waste destin	ed for disposal and encouraging the use of waste as a resource and the second s	arce for al	ternate	energy	5 •
production				0.	
MODULE	TOPICS			L	Hrs
	INTRODUCTION				
Ι	Introduction to energy from waste: characterisation and c	lassificati	on of		9
	waste as fuel –agro based, forest residues, industrial wast	e, Munici	pal		
WASTE SOUDCES & CHADACTEDIZATION					
	Waste production in different sectors such as domestic, in	ndustrial,	1 1		
II	agriculture, postconsumer, waste etc. Classification of wa	aste – agro	based,		9
	hazardous) Characterization of waste for energy utilizati	on Waste	, ,		
	Selection criteria.		, ,		
	TECHNOLOGIES FOR WASTE TO ENERGY				
		. ,	.1 1		
тт	Biochemical Conversion – Energy production from organ	nic waste	through		0
111	Compustion Incineration and heat recovery Pyroly	ai Collve	fication:		9
Plasma Arc Technology and other newer technologies					
	WASTE TO ENERGY OPTIONS				
	Landfill gas, collection and recovery. Refuse Derived Fu	iel (RDF)	– fluff.		
IV	briquettes, pellets. Alternate Fuel Resource (AFR) – prod	luction an	d use in		9
	Cement plants, Thermal power plants and Industrial bo	ilers. Cor	version		
	of wastes to fuel resources for other useful energy application	ations			
	WASTE TO ENERGY & ENVIRONMENTAL IMPI	LICATIO	NS		
N/	Environmental standards for waste to Energy Plant of	berations	and gas		0
v	Savings on non-renewable fuel resources Carbon Cred	lits [.] Carb	on foot		9
	calculations and carbon credits transfer mechanisms		1000		
		Total	Hours	2	15
	Course Outcomes	Bloom's	s Level		
CO1	Ability to understand the conversion factor and basic	Rem	ember/l	Jndersta	and
<u> </u>	concept of Waste to Energy.		A	1	
02	Energy Plants		Арр	Iy	
CO3	Analyse the various aspects of Waste to Energy		Anal	vse	
	Management Systems				
CO4	Carry out Techno-economic feasibility for Waste to		Evalu	late	
	Energy Plants.				
CO5	Create a plant for planning and operations of Waste to		Crea	ite	
<u> </u>	Energy		N.T. 1	T- 1	
CU0 Toyt Boolea	Adding to design the plant for consumption of energy.		viodern	10018	
1. Waste-to-	Energy in Austria – White Book – Figures. Data Facts. 2nd	d edition	Mav 20	010	

2. M.M. EL-Halwagi, Biogas Technology- Transfer and diffusion, Elsevier Applied science Publisher, New York, 1984..

Reference Books

1. D.O Hall and R.P. Overeed, Biomass – regenerable energy, John Willy and Sons Ltd.

New York. 1987

2. Wealth from Waste: Trends and Technologies by Banwari Lal and Patwardhan, TERI Press.

Course Outcomes	Skill	PO	Blooms	Assessing tools
CO1 - Ability to understand the conversion	Remember/Understand		L1/L2	Assignment/Exam/
factor and basic concept of Waste to Energy.				Quiz/ Seminar
CO2 - Apply the knowledge about the	Apply	PO1	L3	Assignment/ Exam/
operations of Waste to Energy Plants				Quiz
CO3 - Analyse the various aspects of Waste to	Analyse	PO2	L4	Assignment/ Exam/
Energy Management Systems				Quiz
CO4 - Carry out Techno-economic feasibility	Evaluate	PO3	L5	Exam/ Quiz/
for Waste to Energy Plants.				Assignment/Seminar
CO5 - Create a plant for planning and	Create	PO4	L6	Assignment/Exam/
operations of Waste to Energy				Seminar
CO6 - Ability to design the plant for	Modern Tools	PO5	L3	Lab/Project
consumption of energy.				

PROFESSIONAL ELECTIVE

10IICH001 PETROLEUM REFINERV ENCINEERING		PETROLEUM REFINERY ENGINEERING		Т	Р	С	
1700	11701		2	1	0	3	
MODULE		TOPICS	I		L Hrs		
I	A B	 Fetroleum Exploration Practices - Reservoir Rock Properties - Reservoir types - Reservoir Estimation Origin – Composition - Classification and constituents of petroleum - Dehydration of crude oil Transportation of crude oil - Classification of petroleum Evaluation of crude oil properties and testing methods Specific gravity - Vapor pressure – Viscosity - red wood viscometer - Flash point - Fire point - Pour point - Smoke point - Aniline point - Diesel index - Octane number - Performance number - Cetane number - Properties of)	
	A	greases - Drop point of grease. and Design of crude oil distillation column Components of crude oil distillation - various crude oil distillation systems - uses of petroleum products					
п	В	uses of petroleum products Treatment Techniques Desalting of crudes, dehydration and fractionation methods; Thermal and catalytic cracking processes. Necessity of cracking - Types of cracking - advantages and disadvantages of catalytic cracking over thermal cracking - Houdrys fixed bed processes - Moving bed processes - Fluid bed catalytic					
	A	Reforming Thermal and catalytic Reforming; Polymerization; Alkylation; Ison finishing and purification processes.	neriza	tion,			
111	В	Upgrading Processes Solvent extraction; hydro treatment processes, Sweetening processes types – Merox – HDS; Dewaxing; Deasphalt; Lube oil treatment					
А		Knocking Reasons for knocking - Additives in petrol - Aviation gasoline - turbine fuel (ATF) - Storage and handling of liquid fuels.	- Avia	ation			
IV	В	Feedstock and product handling Storage, Blending, Loading, Unloading Auxiliary facilities Boilers, Waste water treatment ,Hydrogen production ,Sulfur recov Cooling towers, Blow down system, Compressor engines	very p	olant,	9	,	
	A	Material and Energy balances calculation; c hydrocarbon losses in refinery.	ontro	lling			
V	В	Environmental issues and New Trends in petroleum refinery ope Ecological consideration in petroleum refinery, Waste water control of air pollution, New trends in refinery, Alternative energy Biodiesel, Hydrogen energy from biomass.	e ratio treatn y sou	ns. nent, rces,	9)	

Total Hours	45

Text Books

1. Gary, J.H.; Handwerk, G.E. 2001. Petroleum refining: Technology and economics. 4th ed. Marcel Dekker, Inc.

2. Fahim, M.A.; AlSahhaf, T.A.; Elkilani, A. 2010. Fundamentals of petroleum refining. Elsevier.

3. Myers, R.A. 2004. Handbook of petroleum refining processes. 3rd ed. McGraw-Hill.

4. Seader, J.D.; Henley, E.J.; Roper, D.K. 2011. Separation process principles: Chemical and biochemical operations. 3rd ed., John Wiley & Sons, Inc.

Reference Books

1. Seader, J.D.; Henley, E.J.; Roper, D.K. 2011. Separation process principles: Chemical and biochemical operations. 3rd ed., John Wiley & Sons, Inc.

2. BhaskaraRao B.K., "Modern Petroleum Refining Processes", 5th Edition, Oxford and IBH Publishing Company, New Delhi, 2008.

3. Nelson W.L., —Petroleum Refinery Engineering^{II}, 4th Edition, McGraw Hill Publishing Company Limited, 1958.

4. Hobson G. D., -Modern Petroleum Technology", Part 1&2, 5th Edition, Wiley Publishers, 1984.

COURSE OUTCOMES

The stu	dents have the						
CO1	Ability to Explain the crude oil and its pr	oducts propert	ties, alon	g with its char	racterization		
	methods						
CO2	Ability to Discuss the conversion and treatment and upgrading processes used in refining crude						
	oil						
CO3	Ability to Implement the chemical engine	ering principl	es to the	analysis of sa	fe and efficient		
	refinery operations						
CO4	Ability to Identify the specifications requ	ired for good	quality p	etroleum prod	luct		
CO5	Ability to design a various separation and	l treatment col	umn bas	ed on product	specifications		
CO6	Ability to Interpret the relationship safety	and environn	nent in P	etroleum Refi	ning Industries.		
Course	<mark>e Outcomes</mark> Mapping with Bloom's Taxo	nomy and Pr	ogramn	ne Outcomes			
	Course Outcome	Skill	PO	Bloom's	Assessment		
				Taxonomy	Tools to		
					measure CO		
CO1	Ability to Explain the crude oil and its	Remember/	-	L1/L2	Exam/Assignme		
	products properties, along with its	Understand			nt/Seminar/Quiz		
	characterization methods.						
CO2	Ability to Discuss the conversion and	Apply	PO2	L3	Exam/Assignme		
	treatment and upgrading processes used				nt/Seminar/Quiz		
	in refining crude oil				/Lab/Project		
CO3	Ability to Implement the chemical	Analyze	PO2	L4	Exam/Assignme		
	engineering principles to the analysis of	-			nt/Seminar/Quiz		
	safe and efficient refinery operations				/Lab/Project		
CO4	Ability to Identify the specifications	Investigate	PO4	L5	Mini		
	required for good quality petroleum	-			Project/Assignm		
	product				ent/Quiz/Lab/Ex		
	1				am		

CO5	Ability to design a various separation and treatment column based on product specifications	Design	PO3	L6	Assignment/Lab /Exam/Seminar
CO6	Ability to Interpret the relationship safety and environment in Petroleum Refining Industries	Investigate	PO4	L5	Case studies/Project

	L	Т	Р	С		
19UCH902	POLYMER TECHNOLOGY	3	0	3	3	
AIM					1	
To study the	basics principles and types of polymers.					
OBJECTIVES						
To enable th	e students to compute molecular weight averages from the molecu	lar weight	distributi	on,		
Condensation p	olymerization and transition in polymers.					
MODULE	TOPICS			L	Hrs	
	INTRODUCTION TO POLYMERIZATION					
T	Monomer; functionality and degree of polymerizations; polymers	and their			9	
-	classification; Types of polymerization and mechanisms: addition	n; condensa	tion and		-	
	copolymerization, bulk, solution, emulsion and suspension polym	nerizations.				
	STRUCTURE AND PROPERTIES OF POLYMERS		2			
	Structure of polymers: linear, branched and cross linked; Charact	erization of	f		0	
11	polymers: molecular weight, crystallinity, glass transition and me	chanical			9	
	propertiesUltrasonic waves; Photodegradation, High energy radia	ition, Oxida	ative and			
hydrolytic						
	PLASTICS AND METHODS	1.1				
	Introduction to plastics: Anti-oxidants and stabilizers, polymer ac	iditives; fil	lers,		•	
111	plasticizers; colorants. Moulding methods: Injection; compression transfer and Blow					
	moulding, Processing techniques: Calendaring; casting; extrusion; thermoforming;					
	CHARACTERIZATION TECHNIQUES	1. т.	1.			
IV	Chemical analysis of polymer; X-ray diffraction, Microscopic technique: Light					
	scattering, SEM; Spectroscopic methods: IK, NMR. Thermal analysis: DSC, DTA					
	DEDADATION DEODEDTIES AND INDUSTRIAL LISES		MEDS			
	PREPARATION, PROPERTIES AND INDUSTRIAL USES	or POLI				
V	chlorida: polytetrofluoroethylona: polyteryleta: pylon 6, pylon 6		0			
v	Phenol formaldehyde, urea formaldehyde, and malamine formaldehyde; anovy:					
	urethanes and silicones ion exchange polymers	enyue, epo	лу,			
	dictitutes and sincones, for exchange porymens.	Tote	Hours	:	45	
	Course Outcomes	Bloom's	Level	<u> </u>		
CO1	Understand the principles and types of polymerization	Ren	nember/I	Indersta	nd	
001	processes	Iten		maensta	iu	
CO2	Gain insight into the structure and properties of polymers		App	lv		
CO3	Grasp the methods of preparation and molding of plastics		Anal	vse		
CO4	Develop the knowledge to characterize the plastics by using		Evalu	late		
	different instruments					
CO5	Comprehend the properties and manufacturing processes of Create					
	polymers.					
Text Books						
1. Gowaril	kar V.R., Viswanathan N.V., and Jayadev Sreedhar, -Polymer Sc.	iencell, 9th	Reprint,	New Age	e	
Internat	ional Pvt. Ltd., India, 1996.			_		

2. Rodriguez. F., Cohen, C., Ober, C, Archer, L.A., —Principles of Polymer Systems^I, 5th Edition, Taylor and Francis, Great Britain, London, 2003

Reference Books

1. Williams D.J., —Polymer Science and Engineering, Prentice Hall, New York, 1971.

2. Arora M.G. and Singh M., -Polymer Chemistry, Anmol Publications Pvt. Limited, 2003..

Course Outcomes	Skill	PO	Blooms	Assessing tools
Understand the principles and types of	Remember/Understand		L1/L2	Assignment/Exam/
polymerization processes				Quiz/ Seminar
Gain insight into the structure and properties of	Apply		L3	Assignment/ Exam/
polymers				Quiz
Grasp the methods of preparation and molding	Analyse		L4	Assignment/ Exam/
of plastics				Quiz
Develop the knowledge to characterize the	Evaluate		L5	Exam/ Quiz/
plastics by using different instruments				Assignment/Seminar
Comprehend the properties and manufacturing	Create		L6	Assignment/Exam/
processes of polymers.				Seminar

		L	Т	Р	С	
19UCH903	FERTILIZER TECHNOLOGY		0	0	3	
COURSE OF	BJECTIVE:					
To enable the	students to learn the fertilizer manufacturing process including new	or mo	odifie	d		
MODULE	TOPICS			LF	Irs	
	INTRODUCTION					
Ŧ	Chemical Fertilizers and Organic Manures - Types of chemical I	Fertili	zers.	0		
1	Secondary nutrients, micro nutrients.					
	NITROGEN FERTILIZERS	and I	Iroo			
п	Nitric acid Ammonium sulphate Ammonium Nitrate Calcium A	anu c	ium	Q		
11	Nitrate Ammonium Chloride - Their methods of m	roduci	tion	,	,	
	characteristics, storage and handling specifications.	louue	,			
	PHOSPHATIC FERTILIZERS					
	Raw materials, phosphate rock, Sulphur pyrites -Process for the p	oroduc	tion			
III	of Sulphuric and Phosphoric acids. Ground phosphate rock, bone meal.					
	Single Super Phosphate, Triple Super phosphate -Methods of production,					
characteristics and specifications.						
	POTASSIC FERTILIZERS	.				
	Potassium chloride, Potassium sulphate, Potassium schoenite - Methods of					
IV	production, specification, characteristics. Complex Fertilizers, NPK)	
	Fertilizers, Mono ammonium phosphate, Diammonium phosphate, Nitro					
	FERTILIZERS IMPACTS AND STANDARDS					
	Fluid fertilizers. Controlled Release of fertilizers. Solid. Liquid and					
V	Gaseous pollution from ammonia urea and NPK fertilizer indu	stries	and	9)	
	standards laid down for them. Fertilizer production in India.					
	Tot	al H	ours	4	5	
TEXT BOOH	KS 100	ai 11	Juis	т. 	5	
1. Gopala	a Rao M., Marshall Sittig, Dryden's Outlines of Chemical Technolog	gy, Th	ird E	dition	,	
WEP I	East-West Press, New Delhi, 2010.	~				
2. George	e T. Austin., Shreve's Chemical Process Industries, Fifth Edition, M	cGrav	v Hill			
3. Vincer	nt Sauchelli., The Chemistry and Technology of Fertilizers. Reinhol	d Pub	. Corr	o., 190	50.	
			1			
REFERENC	ES:					
1. Sauch	elli, V.; "The Chemistry and Technology of Fertilizers", ACS MON	OGR	APH]	No. 1	48,	
2. Keinho 3. Fertilis	ser Manual. "United Nations Industrial Development Organisation"	Unite	ed Na	tions		
New Y	York, 1967.	, 01110				
4. Slack,	A.V.; Chemistry and Technology of Fertilisers, Interscience, New Y	York,	1966.			
	COURSE OUTCOMES					
The students h	have the ability to understand					
ADIII	y to define and classify chemical, organic fertilizers and nutrients					

CO2	Ability to demonstrate the flow chart for the manufacture of various types of fertilizers.
CO3	Ability to compare the manufacturing process of different types of fertilizers.
CO4	Ability to investigate the quality and pollution standards permissible in fertilizer industry.
CO5	Ability to design various equipments in a fertilizer industry.

Course Outcomes	Skill	PO	Blooms	Assessing tools
Ability to define and classify	Remember/Understan	PO7	L1/L2	Assignment/Exa
chemical, organic fertilizers and	d			m/ Quiz/
nutrients				Seminar
Ability to demonstrate the flow chart	Apply	PO1,	L3	Assignment/
for the manufacture of various types		PO3		Exam/ Quiz
of fertilizers.				
Ability to compare the	Analyse	PO11	L4	Assignment/
manufacturing process of different				Exam/ Quiz
types of fertilizers.				
Ability to investigate the quality and	Investigation	PO6,	L5	Exam/
pollution standards permissible in		PO7,		Quiz/Assignme
fertilizer industry.		PO9		nt/Seminar
Ability to design various equipments	Design	PO3,	L6	Assignment/Exa
in a fertilizer industry.				m/Seminar/
				Project

19UCH904 FOOD SCIENCE AND TECHNOLOGY		L	Т	Р	С
		3	0	3	3
AIM					I
To study	the basics principles and the calculation techniques used in the	chemical	industry		
OBJECTIV	YES				
To enable	e the students to learn to design processing equipments for Foo	d Industrie	es.		
MODULE	TOPICS			L	Hrs
	CONSTITUENTS OF FOOD				
т	Carbohydrates – proteins, Lipids, Vitamins, Additives, Preser	vatives, So	olvents,		0
1	Flavors, Agents, Food Engineering Operations, Food Sorting.	Cleaning			9
	Grading – Harvesting – Drying storage – Prime processing.		, ,		
_	FOOD PROCESS ENGINEERING OPERATIONS				
	Materials and Energy Balances – Fluid flow applications, Hea	at transfer			
п	applications, Drving, Evaporation, Equilibrium stage process.	leaching	and		9
	Extractions, Applications, Application of Mechanical separati	ions and M	fixing.		
	in Diary Meat Industry. Oil and Flat Industry. Cereal process	ing			
	PRESERVATION OPERATIONS AND PLANT HYGIE	NE			
	Preservation methods & strategies. Thermal Method	s. Nabla	Factor		
	Sterilization Pasteurization Dehydro freezing Irradia	tion Do	simetry		
ш	Transport of food & Preservation Strategies Plant Hygien	e Plant I	Jygiene		9
	Design of sterilization Process Water Quality Unkeen waste	disnosal	Material		,
	handling Packaging Packing of solid Liquid foods Food storage Special case				
Studios					
	DEVELOPMENTS IN FOOD PROCESSING				
	Food Constituents and processing Food emulsions Food Ph		duances		
	in thermal Operation Extrusion cooking Spray druge	dosign	Enorgy		
IV	avpenditure & Soving Food for developing countries Food	ad Datavi	fication		9
	Production of Sugaranara Starah Microbial Polysacabaridas Amino acid Pica				
	bron Tocopherols				
	ECOD SAFETY AND OUAL ITY CONTROL				
	FOOD SAFETY AND QUALITY CONTROL	the TTeelah			
•	Quality Control in Food Industry, Dose Response Relationsi Disblam, Chamical and Miana high size lagrante. East angle	np, Health	1		0
v	Problem, Chemical and Micro biological aspects, Food analy	ysis, instru	iments		9
	& Enzymatic Analysis, Food Safety. Food laws and standard	18 PFA, FI 000	20,		
	ISI/BIS and AGMARK. GMP's, SSOP's HACCP and ISO9	000 progra	ams.	-	4 =
			Hours	2	45
001	LULI A LAL AND COLLEGE AND A	BIOOM'S		T 1 4	1
COI	Understand the constituents of food, food preservation,	Rem	iember/(Indersta	na
	development and food safety			1	
CO2	Comprehend the food process engineering operations with		Арр	ly	
	preservation and development.				
CO3	Familiarize with preservation operations, food safety and		Anal	yse	
	quality control.		_		
CO4	Acquaint with plant hygiene in food processing industries		Evalu	late	
CO5	Acquire the knowledge in safety and quality control in		Crea	ite	
	food processing industries				

Text Books

1. Jowitt R., —Hygienic Design and Operation of Food Plantl, AVI Pvt. Co., West Port, 1980.

- 2. Head man D.R. and Singh R.P., —Food Processing Technology, AVI Pvt. Co., West Port, 1981 **Reference Books**
- 1. Brennan J., Butters G.J.R., Cowell, N.D. and AEV Lilly, —Food Engineering Operations^{II}, 3rd Edition, Applied Scientific Publishers, London, 1990

2. Ronald H. Schmidt and Gary E. Rodrick, —Food Safety Handbookl, John Wiley and Sons, New Jersey, 2005.

19UCH906		OIL & NATURAL GAS ENGINEERING		Т	Р	C	
			3	0	0	3	
MOI	DULE	TOPICS					
Course	e Objecti	lve	~ ~	<u> </u>			
	Stu	dents will be able to understand the Natural gas processing, Gas Compression,	Gas G	atherii	ng and		
Transp	ort Instal	lation, Operation and trouble shooting of natural gas pipelines.					
Ι	A	ANATURAL GAS Natural gas technology and earth science: Branches of petroleum Industry. Sources of Information for natural gas engineering and its applications. Geology and earth sciences: Earth sciences-Historical geology, Sedimentation process, Petroleum reservoirs, Origin of petroleum. Earth temperatures & pressure, Earth temperatures, Earth pressure. Petroleum: Natural gas, LP gas, Condensate, & Crude oil.BCOMPOSITION OF NATURAL GAS Properties of Natural Gases: typical compositions. Equations of state: general cubic equations, specific high accuracy equations. Use of equation of state to find					
	cubic equations, specific high accuracy equations. Use of equation of st residual energy properties.	late to	ma				
TT	A Pumps & Compressors Gas Compression: Positive displacement and centrifugal compressors; fans. Calculation of poser requirements. Compressible Flow in Pipes: Fundamental equations of flow: continuity, momentum, elegy equations.						
n	В	Natural Gas Offshore Drilling, Production & Handling Directional Drilling and Horizontal Drilling-Drilling Deepwater Reservoir – Deepwater production systems – Mooring Systems – Gas Terminals-Sucker Rod pumping – Separation, Storage, Transportation of Natural Gas					
	A	Well testing Non-dimensional forms of the equation; derivation of coefficients relation dimensionless to real variables. Infinite reservoir solution: Pseudo-steady-state solution. Gas Well Deliverability Tests: Flow-after-flow tests: prediction of IPR curve and AOF for the well. Isochronal tests. Draw down tests: need for data at two flow rates					
III	В	Natural Gas estimation in reservoir: Isothermal flow in pipes: the Weymouth equation. Static and flow hole pressures in wells. Fundamentals of Gas flow in porous media: Steady equations. Definition of pseudo-pressure function. Gas flow in cylindrical general equation for radial flow of gases in symmetrical homogeneous reserve	ing bot y state reserv pirs.	ttom- flow voirs:	9	'	
	A Natural Gas Treatment & Process A Dehydration – Desulphurization processes Acid Gas Removal – Low temperature processes						
IV	В	NATURAL GAS AND NGL RECOVERY NGL, LPG, C3, C2 Fraction Recovery from Natural Gas- Refrigeration pro oil absorption process – Solid bed adsorption and membrane separation proc fractionation.	cess – cess –	9 Lean NGL			
V	A	Economics of Natural Gas Current status in India – Trade & Selection of port location – Econom Processing	ics of	Gas	9)	

		Contemporary issues and Trends in Oil & Natural Gas process.	
B Ecological consideration in Natural gas ,Waste water treatment, control of			
		air pollution, trends in process of natural gas, Alternative energy	
		Total Hours	45
Text B	ooks		
1Katz I) I et al	Natural Gas Engineering (Production & storage) McGraw-Hill Singapore 1968	

1Katz D.L.et al., Natural Gas Engineering (Production & storage), McGraw-Hill, Singapore. 19682. Lyons, W.C., "Standard Handbook of Petroleum and Natural Gas Engineering", Vol. 2, Gulf Professional Publishing, Elsevier Inc., 2006.

Reference Books

1. Katz, D. L. and Lee, R.L., "Natural Gas Engineering", McGraw Hill, 1990.

2. Dring, M.M., "The Natural Gas Industry – A Review of World Resources and Industrial Applications", Butterworth, 1974.

3. Saied	Mokhatab, William	A. Poe, and J	ames G. Speight, "I	Handbook of Natural	Gas Transmission and
Processing	g", Gulf Professional	Publishing, Else	vier Inc., 2006. 4. Hol	bson G. D., –Modern	Petroleum Technology",
Part	1&2,	5th	Edition,	Wiley	Publishers,
1984.					

COURSE OUTCOMES

The stud	ents have the
CO1	Ability to Emphasize fundamentals of mathematics and integrates them in application to traditional Natural
	Gas Engineering to improve further needs
CO2	Ability to Select, locate and orient systems for offshore problems
CO3	Ability to Implement revamp and retrofit a system, process to meet desired needs within realistic constraints
	such as environmental, health, safety, manufacturability and sustainability in the field of Natural Gas
CO4	Ability to Apply natural Gas Refining principles and practices for optimizing resource development and
	management
CO5	Ability to Recognize the purification mechanism to estimate, design equipment's for processing, storage
	And transport
CO6	Ability to Inspect project economics and resource valuation methods for design and decision making under
	conditions of risk and uncertainty environment in NG Production ans process.

Course Outcomes Mapping with Bloom's Taxonomy and Programme Outcomes

Course Outcome		Skill	РО	Bloom's Taxonomy	Assessment Tools
C01	Ability to Emphasize fundamentals of mathematics and integrates them in application to traditional Natural Gas Engineering to improve further needs	Analyze	PO2	L4	Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test
CO2	Ability to Select, locate and orient systems for offshore problems	Apply	PO2	L3	Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test
CO3	Ability to Implement revamp and retrofit a system, process to meet desired needs within realistic constraints such as environmental, health, safety, manufacturability and sustainability in the field of Natural Gas	Analyze	PO2	L4	Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

CO4	Ability to Apply natural Gas Refining principles and practices for optimizing resource development and management	Apply	PO2	L3	Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test
CO5	Ability to Recognize the purification mechanism to estimate, design equipment's for processing, storage And transport	Investigate	PO4	L5	Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test
CO6	Ability to Inspect project economics and resource valuation methods for design and decision making under conditions of risk and uncertainty environment in NG Production and process.	Investigate	PO4	L5	Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

19UCH907 COMPUTATIONALFLUID DYNAMICS								
				0	0	3		
OBJE	CTIVE	S						
• To in	ntroduce	e Governing Equations of viscous fluid flows						
• To in	ntroduce	e numerical modeling and its role in the field of fluid flow and heat t	ransf	er				
• To e	enable t	he students to understand the various discretization methods, solution	tion r	oroceo	lures	and		
turbi	ilence n	nodeling	r					
• To c	reate co	nfidence to solve complex problems in the field of fluid flow and he	eat tra	ansfer	by us	sing		
high	speed c	computers	sut th		og u	,ing		
MOD	ULE	TOPICS			LH	rs		
nio D		GOVERNING EQUATIONS AND BOUNDARY CONDITION	JS			15		
		Basics of computational fluid dynamics – Governing equations	s of f	fluid				
		dynamics – Continuity Momentum and Energy equations –	Chen	nical				
т	Δ	species transport – Physical boundary conditions – Time	-aver:	aged	9			
•	1	equations for Turbulent Flow – Turbulent-Kinetic Energy Fa	ustion	15 _	/			
		Mathematical behaviour of PDFs on CFD – Elliptic Paral	volic	and				
		Hyperbolic equations	Joine	ana				
		FINITE DIFFERENCE AND FINITE VOLUME METHO	DS F	OR				
		DIFFUSION						
		Derivation of finite difference equations – Simple Methods –	- Get	neral				
		Methods for first and second order accuracy – Finite volume for	rmuls	ntion				
II	Α	for steady state One. Two and Three dimensional diffusion problems						
		Parabolic equations – Explicit and Implicit schemes – Example problem elliptic and parabolic equations – Use of Finite Difference and F						
		Volume methods	nu i	mite				
		FINITE VOLUME METHOD FOR CONVECTION DIFFU	ISIO	N				
		Steady one-dimensional convection and diffusion – Central upwind						
ш	Δ	differencing schemes properties of discretization sch	, up. emes		9			
111	Α	Conservativeness Boundedness Transportiveness Hybrid Po	ower_	law)			
		OIIICK Schemes						
		FLOW FIFLD ANALYSIS						
	A	Finite volume methods -Representation of the pressure gradient	term	and				
IV		continuity equation – Staggered grid – Momentum equations –	- Pres	sure	9			
1 V		and Velocity corrections – Pressure Correction equation	SIM	PIF				
		algorithm and its variants – PISO Algorithms	5 IVI					
v		TURBULENCE MODELS AND MESH CENERATION						
	A	Turbulence models mixing length model Two equation models – High and						
		low Reynolds number models – Structured Grid generation Ung	struct	ured	9			
		Grid generation – Mesh refinement – Adaptive mesh – Software tools						
	I	Total Hours	015.		45			
		10001 110015			чJ			

LTPC

Text Books

1. Versteeg, H.K., and Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The finite volume Method", Pearson Education Ltd.Second Edition, 2007.

2. Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd., 1998.

Reference Books

1. Patankar, S.V. "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation, 2004.

2. Chung, T.J. "Computational Fluid Dynamics", Cambridge University, Press, 2002. Ghoshdastidar P.S., "Heat Transfer", Oxford University Press, 2005
| 3. Mur | 3. Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa | | | | |
|--|--|---|-------------------|---|--|
| Publish | Publishing House, New Delhi, 1995. | | | | |
| 4. ProdipNiyogi, Chakrabarty, S.K., Laha, M.K. "Introduction to Computational Fluid Dynamics", | | | | | |
| Pearsor | Pearson Education, 2005. | | | | |
| Anil W | . Date "Introduction to Computational Flu | id Dynamics" | Cambr | idge Universit | y Press, 2005. |
| | COURSE | OUTCOMES |) | | |
| The stu | dents have the | | | | |
| CO1 | Ability to understand basic principles of | turbulence, m | ixing, f | ast reactions, | multiphase flows |
| ~ ~ ~ ~ | in CFD | | | | |
| CO2 | Ability to use the various discretizati | on methods, | solutio | on procedures | and turbulence |
| <u> </u> | modeling to solve flow and heat transfer | problems | CED | 1 1 4 | 110 |
| 003 | Ability to analyze limitations with the me | odels used in | CFD an | d select appro | priate models for |
| CO4 | Ability to investigate the problems relat | ad to the evet | ame by | colocting suit | able models and |
| 0.04 | numerical methods and critically evaluate | e simulation re | enis by
sults | selecting suit | able models and |
| CO5 | Ability to create numerical modeling and | its role in the | field of | f fluid flow an | d heat transfer |
| CO6 | Ability to conduct experiments using mo | dern software | tools | | |
| Course | • Outcomes Mapping with Bloom's Taxo | nomy and Pr | ogram | me Outcomes | |
| Course Outcome Skill PO Bloom's Assessment | | | | | Assessment |
| | | | | Taxonomy | Tools to |
| | | | | · · | measure CO |
| CO1 | Ability to understand basic principles | Remember/ | - | L1/L2 | Exam/Assignm |
| | of turbulence, mixing, fast reactions, | Understand | | | ent/Seminar/Qu |
| | multiphase flows in CFD | | | | iz |
| CO2 | Ability to use the various discretization | Apply | PO1 | L3 | Exam/Assignm |
| | methods, solution procedures and | | | | ent/Seminar/Qu |
| | turbulence modeling to solve flow and | | | | 1Z/Lab/Project |
| CO3 | Ability to analyze limitations with the | Analyze | PO2 | I A | Exam/Assignm |
| 005 | models used in CFD and select | Analy 20 | 102 | 1.4 | ent/Seminar/Ou |
| | appropriate models for these systems | | | | iz/Lab/Project |
| CO4 | Ability to investigate the problems | Investigate | PO4 | L5 | Mini |
| | related to the systems by selecting | C | | | Project/Assign |
| | suitable models and numerical methods | | | | ment/Quiz/Lab/ |
| | and critically evaluate simulation | | | | Exam |
| | results | | | | |
| ~ ~ - | Ability to create numerical modeling | Design | PO3 | L6 | Assignment/La |
| CO5 | | _ | | | 1/1 /0 ' |
| CO5 | and its role in the field of fluid flow | | | | b/Exam/Semin |
| CO5 | and its role in the field of fluid flow
and heat transfer | Modern | DO5 | 13 | b/Exam/Semin
ar |
| Course
Course
CO1
CO2
CO3
CO4 | Ability to understand basic principles Outcomes Mapping with Bloom's Taxo Course Outcome Ability to understand basic principles of turbulence, mixing, fast reactions, multiphase flows in CFD Ability to use the various discretization methods, solution procedures and turbulence modeling to solve flow and heat transfer problems Ability to analyze limitations with the models used in CFD and select appropriate models for these systems Ability to investigate the problems related to the systems by selecting suitable models and numerical methods and critically evaluate simulation results | nomy and Pr Skill Remember/ Understand Apply Analyze Investigate Design | PO1
PO2
PO3 | me Outcomes
Bloom's
Taxonomy
L1/L2
L3
L4
L5
L6 | Assessment
Tools to
measure CO
Exam/Assignm
ent/Seminar/Qu
iz/Lab/Project
Exam/Assignm
ent/Seminar/Qu
iz/Lab/Project
Mini
Project/Assign
ment/Quiz/Lab/
Exam |

L	Т	Р	С
3	0	0	3

Objective:

The course is aimed to educate the students about the fundamentals of plant safety and execution of safety measures, risk analysis and assessment, hazard identification in chemical industries.

MOL	JULE	TOPICS	L (Hrs)					
	ASafety Fundamentals and Principles: Need for Development of Safety Consciousness in Chemical Industries, Safety programs, components and realization, training & education, psychological attitude towards safety.DetectionDetection							
I	В	Potential Hazards in Chemical Process Industries Risk, Hazard, Chemical Hazard Symbols, Toxic Substances, Classes of Toxicity, Entry Points for Toxic Agents, Effects of Toxic Substance, Relationship of Doses and Responses, Threshold Limiting Values, Exposure Thresholds	9					
II	A	Safety in Operations and Processes: Incompatible chemicals, Safe Handling and Operation of materials and Machinery; Periodic inspection and replacement. MSDS and Storage of Chemicals. Safety in operations and processes, Decomposition & Runaway reactions, unstable products, Initiating factors, Reactive Chemical Hazard, Pressurized Heavy Water Reactor	9					
11	В	Fuel Arrangement in FBR, Safety Criteria, Liquid Metal Fast Breeder Reactor Safety Features, Passive Shutdown System, Potential Failure Events, Severe Accident Scenarios Sodium Reactivity with Water: Micro, Small, Intermediate, Large Leak, Leak Detection System, Strong Signal Detection, Rate of Rise Detection, Plant Operator Action Plan Sodium Fire Protection.						
III	Α	Fire and Explosion Types of Fire, Fire triangle, Effective Ignition Source, Static Electricity, Explosion: BLEVE, VCE, Detonation and Deflagration, Flammability Limits, LOC, Flash point, Flammability Diagram, Flammable and Combustible Liquids.	9					
	В	Industrial Accidents: Industrial accidents –types, nature/effects, causes, costs, prevention, investigation and analysis, accident proneness, case studies.						
IV	Α	Hazard Identification & Risk Assessment Process of Risk Management Hazard Identification, Evaluation (Risk Assessment, Risk Matrix), Quantitative, Qualitative Safety Review, Process /System Checklists, Risk Control Implementation, Action and Recommendation.	9					
	В	 Safety Studies – HAZOPS, HAZANS, Fault tree, Event tree and risk analysis. Assessing Reaction Hazard: Tools for evaluating thermal explosion, Steps to Reduce Reactive Hazards. Process Plant Design: Flow Diagrams 						
v	A	Legal Aspects: Factories Act, ESI act and Workmen's compensation act, Role of Government, safety organizations, management and trade unions in promoting industrial safety. Emergency response systems for hazardous goods basic rules and requirements which govern the chemical industries.	9					
	B	Case Studies and Industrial Visits						
		Total Hours	45					

Text Books

- 1. Ridley Safety at Work, VII Edition, Butterworth Heinman 2007.
- 2. William Handley, Industrial Safety Hand Book McGraw-Hill Book Company 2nd Edition, 1977.
- 3. Fawatt, H.H. and Wood, W.S.Safety and Accident Prevention in Chemical Operation, Interscience, 1965

Reference Books:

- 1. Heinrich, H.W. Dan Peterson, P.E. and Nester Rood. Industrial Accident Prevention, McGraw-Hill Book Co., 1980
- 2. Blake, R.P., Industrial Safety, Prentice Hall Inc., New Jersy 3rd Edn. 1963.

COUR	SE OUTCOMES						
The stu	dents will have the						
CO1	Ability to understand the basic concept	ots related to c	hemical	plant safety			
CO2	Ability to identify and classify hazards	s in chemical i	ndustries	8			
CO3	Ability to investigate and analyse the accident causes and prevention techniques						
CO4	Ability to analyse qualitative and quan	titative risk as	sessmen	ıt			
CO5	Ability to apply the knowledge in hand	dling hazards					
CO6	Ability to devise safety policies and pr	ocedures in in	nplemen	ting total safet	y in a plant		
Course	<mark>e Outcomes</mark> Mapping with Bloom's Ta	axonomy and	Program	nme Outcom	es		
Course	Outcome	Skill	РО	Bloom's Taxonomy	Assessment Tools to measure CO		
CO1	Ability to understand the basic concepts related to chemical plant safety	Remember/ Understand	PO1, PO4, PO5	L1/L2	Exam/Assignme nt/Seminar/Quiz		
CO2	Ability to identify and classify hazards in chemical industries	Apply	PO2, PO4, PO5	L3	Exam/Assignme nt/Seminar/Quiz/ Lab/Project		
CO3	Ability to investigate and analyse the accident causes and prevention techniques	Analyze	PO2, PO5, PO6, PO7, PO8	L4	Exam/Assignme nt/Seminar/Quiz/ Lab/Project		
CO4	Ability to analyse qualitative and quantitative risk assessment	Investigate	PO2, PO3,	L5	Mini Project/Assignm ent/Quiz/Lab/Ex am		
CO5	Ability to apply the knowledge in handling hazards	Investigate	PO1, PO6, PO7	L5	Assignment/Exa m/Seminar		
CO ₆	Ability to devise safety policies and procedures in implementing total safety in a plant	Design	PO6, PO9, PO10	L6	Seminar/Mini Project/ Lab		

1							
CON	CONTROL L T						
OBJI	ECTIV	E:					
On su Air po	On successful completion of the course the student should able to study the 2 1 Air pollution and control.						
MOD	ULE	TOPICS			LH	[rs	
Ι	A	INTRODUCTION Definition, Sources, classification and characterization of air po air pollution on health, vegetation & materials. Types of inversion smog.	ollutants. on, photo	Effects of chemical	9		
п	IIAMETEOROLOGY Temperature lapse rate & stability, wind velocity & turbulence, plume behavior, measurement of meteorological variables, wind rose diagrams, Plume Rise, estimation of effective stack height and mixing depths. Development of air quality models-Gaussian dispersion model9						
III A SAMPLING Sampling of particulate and gaseous pollutants (Stack, Ambient & indoor air pollution), Monitoring and analysis of air pollutants (PM2.5, PM10, SOX, NOX, CO, NH3).				9			
IV	IV A CONTROL TECHNIQUES Particulate matter and gaseous pollutants- settling chambers, cyclone separators, scrubbers, filters & ESP. 9						
VAAIR POLLUTION DUE TO AUTOMOBILES Air pollution due to automobiles, standards and control methods. Noise pollution causes, effects and control,noise standards. Environmental issues, global episodes, laws, acts, protocols.9							
			Tot	al Hours	45	5	
Text	Books						

1. M. N. Rao and H V N Rao, "Air pollution", Tata Mc-G raw Hill Publication.

2. H. C. Perkins, "Air pollution". Tata McGraw Hill Publication

3. Mackenzie Davis and David Cornwell, "Introduction t o Environmental Engineering" McGraw-Hill Co.

Reference Books

1. Noel De Nevers, "Air Pollution Control Engineering", Waveland Pr Inc.

2. Anjaneyulu Y, "Text book of Air Pollution and Contr ol Technologies", Allied Publishers.

	COURSE OUTCOMES				
The stu	dents have the				
CO1	Ability to identify the major sour	ces of air pollution a	ind und	erstand thei	r effects on health and environment.
CO2	Ability to evaluate the dispersion	of air pollutants in t	he atm	osphere and	to develop air quality models.
CO3	Ability to ascertain and analyze s	ampling techniques	for atm	ospheric an	d stack pollutants.
CO4	Ability to choose and design cont	trol techniques for pa	articula	te and gased	ous emissions.
CO5	Ability to select & investigate Ai	r pollution due to au	tomobi	les forming	at a Air pollution and control.
CO6	Ability to conduct experiments us	sing modern tools.			
Course	<mark>e Outcomes</mark> Mapping with Bloor	n's Taxonomy and	Progra	mme Outc	omes
	Course Outcome	Skill	PO	Bloom's	Assessment Tools to measure CO
				Taxono	
CO1	Ability to identify the maior	Domoush on/Lindon		my	Exam / A asi an mont/Som in an/Ouiz
COI	Ability to identify the major	stand	-	L1/L2	Exam/Assignment/Seminar/Quiz
	sources of air pollution and	stand			
	health and any incompany				
002	neatin and environment.	F 1 4		1.5	
02	Ability to evaluate the	Evaluate	PO4	LS	Exam/Assignment/Seminar/Quiz/La
	dispersion of air pollutants in				0/110jeet
	the atmosphere and to develop				
CO3	air quality models.	A 1	DOO	т. 4	
003	Ability to ascertain and	Analyze	PO2	L4	Exam/Assignment/Seminar/Quiz/La
	analyze sampling techniques				0/1 Toject
	for atmospheric and stack				
CO4	Ability to shoose and design	Desian	DO2	IC	Mini
CO4	Ability to choose and design	Design	PO3	LO	MIIII Project/Assignment/Ouiz/Lab/Eyam
	control techniques for				Tiojeet/Assignment/Quiz/Lao/Exam
	particulate and gaseous				
	emissions.				
COF	Ability to select & investigate				
05	Ability to select & investigate	Investigate	PO4	L5	Assignment/Lab/Exam/Seminar
	All pollution due to				
	automobiles forming at a Alf				
<u>CO4</u>	A bility to conduct experiments	Modern Toola	DO5	1.2	Lab/Droigat
	using modern tools.	would fin 1001s	PU3		Lau/Ploject

Course Level Assessment Questions
Course Outcome 1 (CO1):
1.Write a note on major sources of air pollution?
2. Explain the principle of main health effects of air
pollution?
3. With a neat sketch, explain the working principle of Five
major causes of air pollution?
4. Distinguish between the impacts of air pollution?
Course Outcome 2 (CO2):
1. Derive an methods of pollution dispersion in the atmosphere?
2.Evaluate the dispersion of air pollutant?
3.Explain how will you find out the favorable condition for the dispersion of pollutants in the
atmosphere?
4. Discuss in detail about the difference between primary and secondary air pollutants?
Course Outcome 3 (CO3):
1. Analyze the basic principles of ambient air sampling and stack sampling.
2.Find out the atmospheric air sampling.
3.Explain in detail about the technique is used to collect and sample particulate matter.
4.Discuss in detail about the use of impinges in stack monitoring.
Course Outcome 4 (CO4):
1.Design the control of particulate matter emissions.
2. Explain in detail about the most effective method for control of particulate matter.
3. Discuss in detail about the dangerous is particulate matter.
4. With a neat sketch about the primary and secondary pollutants.
Course Outcome 5 (CO5):
1. Find out the three main air pollution from the automobile and explain how it is formed.
2. Identify the air pollution to be controlled from automobiles.
3. Discuss in detail about the following factors affected by air pollution.
4. Explain in detail about the causes of air pollution.

19UCH910	WASTE	WATER	TREATMENT	AND	L	Т	Р	С
RECYCLING					3	0	0	3

Objec	ve:	
٠	The course is aimed to educate the students about the source identification, treatment techniques, recycli	ng of
	vaste water and apply the same for field application.	
MOT	T	

MODUL E	TOPICS	L (Hrs)
I	Waste Water an Overview: Terminology –Sources and Types of Waste water- Point and Non point sources, Waste water characteristics- Pollutants in waste water inorganic – Organic and metallic constituents.Waste water management: Concept of Treatment and Recycling - Regulations – Health and Environment Concerns in waste water management – Issues and 	9
п	Physical and Chemical Treatment: Role of unit processes in waste water treatment, Screening- Equalization- Neutralization- Sedimentation- Flocculation-Floatation and Aeration Systems-Chemical coagulation – Chemical Oxidation-Chemical precipitation for improved plant performance chemical oxidation.	9
ш	 Biological Treatment: Overview of biological treatment – Microbial metabolism- Bacterial growth and its kinetics – Aerobic biological oxidation – Activated Sludge process- Trickling filters– Rotating biological contactors – Combined aerobic processes. Anaerobic treatment: suspended growth, attached growth, fluidized bed and sludge blanket systems; nitrification, denitrification- Phosphorus removal 	9
IV	Advanced Treatment: Technologies used in advanced treatment – Removal of Colloids and suspended particles – Nutrient Removal – Membrane processes – Adsorption and Ion Exchange – Advanced oxidation process – Disinfection and Chemical Treatments.Alternate Waste water Treatment Systems: SBR and SBBR- MBR and MBBR	9
v	 Sludge Management: Introduction to Waste water sludge – Quantity and Characteristics. Sludge Processing and Treatment: Sludge Thickening- Sludge stabilization and Conditioning – Dewatering Hygienisation and Disposal/Reuse 	9
VI	Process Analysis and Selection: Components of waste water flows – Analysis ofData – Reactors used in waste water treatment – Mass Balance Analysis –Modeling of ideal and non ideal flow in Reactors – Process Selection.	9
VII	Waste Water Reuse and Recycling:Challenges and Risks -Decision making inWaste water Reuse and Recycling- Global Practices and Case Studies.	
	Total Hours	45

Text Books

1. Metcalf, Eddy and Tchobanoglous G., —Waste Water Engineering Treatment and Reusell, 2nd Edition, Tata McGraw Hill Company, NewYork, 2002.

2. Industrial Waste Water Management, Treatment and Disposal-MOP FD-3^{||}, 3rd Edition, Tata McGraw Hill Professional Publishing Company, New York, 2008.

Reference Books

- 1. Mackenzie L Davis, Water and Wastewater Engineering", Prentice Hall of India, New Delhi, 2010.
- 2. David A Cornwell and Mackenzie L Davis., "Introduction to Environmental Engineering", Volume I, 4th Edition, Asian Books Pvt. Ltd., 1985.
- 3. Eckenfelder W.W., —Industrial Water Pollution Controll, 2nd Edition, McGraw-Hill, 1999.
- 4. Arceivala S.J., -Wastewater Treatment for Pollution Controll, 3rd Edition, McGraw-Hill,

	2006.				
COUR	RSE OUTCOMES				
The stu	idents will have the				
CO1	Ability to understa	nd the sources, compone	ents and	l need for tre	eatment of waste water
CO2	Ability to identify a	and classify various wate	er treati	ment process	es
CO3	Ability to analyze t	the principles involved in	n waste	water treatm	ient techniques
CO4	Ability to investig	ate recent developments	in the t	treatment tec	hnologies
CO5	Ability to design w	ater treatment systems			
CO6	Ability to carry out	t modeling of reactors us	sed for	waste water t	reatment
Cours	<mark>e Outcomes</mark> Mapping	with Bloom's Taxonor	ny and	Programm	e Outcomes
Cours	e Outcome	Skill	РО	Bloom's Taxonom y	Assessment Tools to measure CO
CO1	Ability to	Remember/Understan	PO1	L1/L2	Exam/Assignment/Seminar/Quiz
	understand the	d	,		
	sources,		PO6		
	need for treatment		, PO7		
	of waste water		107		
CO2	Ability to identify	Apply	PO2	L3	Exam/Assignment/Seminar/Quiz/Lab/Proj
	and classify various		,		ect
	physicochemical		PO3		
	treatment processes		, PO4		
			104		
			, PO7		
CO3	Ability to analyze	Analyze	PO2	L4	Exam/Assignment/Seminar/Quiz/Lab/Proj
	the principles		,		ect
	involved in waste		PO3		
	techniques		, PO4		
	teeninques		,		
CO4	Ability to	Investigate	PO2	L5	Mini Project/Assignment/Quiz/Lab/Exam
	investigate suitable		,		
	advanced treatment		PO3		
	techniques		, PO4		
			,		
CO5	Ability to design	Design	PO2	L5	Assignment/Exam/Seminar, Project work
	systems for water		,		
	treatment		PO3		
			, PO4		
			104		
			, PO9		
CO6	Ability to carry out	Create	PO5	L5	Assignment/Exam/Seminar
	modeling of				
	reactors				
Cou	ırse Outcomes			Quest	tions

	1. How are the characteristics of industrial waste water expressed? What is the
	importance of dissolved oxygen which is present in water? How does it help for
CO1	the treatment of waste water? How the dissolved oxygen level is maintained in the
	stream, explain with the help of oxygen Sag curve.
	2. Describe the anaerobic process of decomposition.
	1. i) State the function and importance of two stage anaerobic sludge digestion (High
	rate process) for production of Biogas.
	ii) Discuss the phenomenon of discrete sitting of particles in primary treatment
603	process.
02	iii) Discuss the working principle of Trickling filter which acts as attached growth
	biological reactor.
	2. Draw a standard flow chart for waste water treatment operation.
	3. Enlist various treatment operation for facilitating reuse of waste water
	1. The data on oxygen utilisation are given below in BOD tests of waste water.
	Obtain the rate constant (k) and initial organic matter concentration (LO) using the
CO3	established B.O.D. equation.
	2. Between BOD and COD, which one usually assumes higher value for a food plant.
	Justify your answer.
	1. A waste treatment plant is required to digest a sludge in such a way that the
	moisture content is reduced to 90% from the initial value of 95%. The inflow of
	sludge initially contains 60% volatile matter in the solid portion and during
CO4	digestion only 60% of the volatile matter is destroyed. The volatile matter has a
04	specific gravity of 2.5 and fixed solid has a value of 1.0. Calculate the volume of
	sludge before and after digestion if the inflow contains 1000 lb dry solid.
	2. List and differentiate different types of Aerobic Attached Growth Bioreactors and
	discuss when and under what conditions each of these bioreactors are preferred?
	1. i) Discuss the relative merits and demerits of Batch and continuous processes for
	treatment of waste water.
CO5	ii) How will you proceed to formulate the design criteria
	for a sedimentation tank.
	2. Write note on the design guidelines for a reactor to be used for the treatment of
	municipal sewage.
CO6	1. From the kinetic consideration establish the Mathematical Model for the BOD
200	curve which is equivalent to destruction of organic matter by biological oxidation.

SOLID WASTE MANGEMENT

L T P C 3 0 0 3

Objective:

The course is aimed to provide comprehensive overview of solid and hazardous wastes and impart knowledge on solid waste management aspects.

MOD	DULE	TOPICS	L (Hrs)
I	A	Legal and Organizational foundation: Definition of solid waste - waste generation in a technological society - sources and types of solid waste - legislations on management and handling of municipal solid wastes, hazardous wastes, biomedical wastes, batteries waste, E - waste and plastics, monitoring responsibilities.	9
П	A	Collection of Solid Waste: Type of waste collection systems, analysis of collection system - Alternative techniques for collection system. Separation and Processing and Transformation of Solid Waste: unit operations used for separation and processing, Materials Recovery facilities, Waste transformation through combustion and anerobic composting, anaerobic methods for materials recovery and treatment - Energy recovery - Inc incerators. Transfer and Transport: need for transfer operation, transport means and methods, transfer station types and design requirements. Landfills: Site selection, design and operation, drainage and leachate collection systems - requirements and technical solutions, designated waste landfill remediation - Integrated waste management facilities.	9
III	A	Definition and identification of hazardous wastes - sources and characteristics - hazardous wastes in Municipal Waste - Hazardous waste regulations - minimization of Hazardous Waste - compatibility, handling and storage of hazardous waste - collection and transport.	9
IV	A	Hazardous waste treatment technologies - Design and operation of facilities for physical, chemical and thermal treatment of hazardous waste - Solidification, chemical fixation and encapsulation, incineration. Hazardous waste landfills: Site selection, design and operation - remediation of hazardous waste disposal sites.	9
V	Α	Sampling and characterization of Solid Wastes; TCLP tests and leachate studies	9
		Total Hours	45

Reference Books

1. Techobanoglous G, Integrated Solid Waste Management, McGraw - Hill Publication, 1993.

2. Wentz C A, Hazardous Waste Management, McGraw - Hill Publication, 1995.

3. Michael D. LaGrega, Philip L Buckingham, Jeffrey C. E vans and Environmental

4. Resources Management, Hazardous waste Management, Mc - Graw Hill International edition, New York, 2001.

5. CPHEEO, "Manual on Municipal Solid waste management, Central Public Health and Environmental Engineering Organisation, Government of India, New Delhi, 2000.

6. Vesilind P.A., Worrell W and Reinhart, Solid waste Engineering, Thomson Learning Inc., Singapore, 2002.

COUR	SE OUTCOMES
The stu	idents will have the
CO1	Ability to understand solid wastes and its sources
CO2	Ability to identify and classify solid and hazardous wastes

CO3	Ability to investigate and analyse the solid waste remedial measures its importance								
CO4	Ability to understand the legislations pe	ertaining to so	lid waste	e management					
CO5	Ability to apply the knowledge and unc	lertake project	s related	to solid waste	e management				
Course	e Outcomes Mapping with Bloom's Ta	xonomy and l	Program	nme Outcome	S				
Course	e Outcome	Skill	РО	Bloom's Taxonomy	Assessment Tools to measure CO				
CO1	Ability to understand solid wastes and its sources.	Remember/ Understand	PO1, PO4, PO5	L1/L2	Exam/Assignme nt/Seminar/Quiz				
CO2	Ability to identify and classify solid and hazardous wastes	Apply	PO1, PO5, PO6	L3	Exam/Assignme nt/Seminar/Quiz /Lab/Project				
CO3	Ability to investigate and analyse the solid waste remedial measures its importance.	Analyze	PO2, PO3, PO6, PO7	L4	Exam/Assignme nt/Seminar/Quiz /Lab/Project				
CO4	Ability to understand the legislations pertaining to solid waste management.	Investigate	PO6, PO9, PO10	L5	Mini Project/Assignm ent/Quiz/Lab/Ex am				
CO5	Ability to apply the knowledge and undertake projects related to solid waste management	Investigate	PO5, PO6, PO7, PO8, PO9, PO10	L5	Assignment/Exa m/Seminar, Project work				

. 19	19UCH911 ALTERNATIVE ENERGY TECHNOLOGY L T H					С
OBJE The co Impar indust policy techno	OBJECTIVES The course is aimed to Impart knowledge can be seen as a way to reduce carbon emissions, to promote 2 industrial development, to decrease fossil fuel imports and meet other 2 policy goals. Each of these goals leads to a different set of programs and 2 technologies. TOPICE					3
MOI	DULE	TOPICS			LH	Irs
I	I A SOLAR ENERGY Solar Radiation, Measurements of Solar Radiation, Flat Plate And Concentrating Collectors, Solar Direct Thermal Applications, Solar Thermal Power Generation, Fundamentals of Solar Photo Voltaic Conversion, Solar Cells, Solar PV Power Generation, Solar PV Applications.					
II A WIND ENERGY Wind Energy Estimation, Types of Wind Energy Systems, Performance, Site Selection, Details of Wind Turbine Generator.)
III	IIIOCEAN ENERGY Ocean Thermal Energy Conversion (OTEC), Principle of operation, development of OTEC plants, Tidal and wave energy, Potential and conversion techniques, mini-hydel power plants.9)
IVABIO-MASS Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking.9)	
V	VAGEOTHERMAL ENERGY Introduction of Geothermal Energy Resources, types of wells, methods of harnessing the energy, scope in India.9					
		Tot	tal H	ours	4	5
Text I 1. Rer 2. Nor Refer	Books neweble n conver	energy resources: Tiwari and ghosal, Narosa publication. ntional Energy Sources,Khanna Publication.				

- 1. Renewable Energy Sources:Twidell& Weir, CRC Press.
- Solar Energy/ S.P. Sukhatme, Tata McGraw-Hill.
 Non Conventional Energy Systems: K M. Mittal, A H WheelerPublishing Co Ltd.
 Renewable Energy Technologies: Ramesh & Kumar, Narosa publication.
- 5. Biomass Energy, Oxford &IBH Publication Co.

COURSE OUTCOMES								
The students have the								
CO1	Ability to Understand the Need, importan	nce and scope	of non	conventional	and alternate			
<u> </u>	energy resources.							
$\frac{CO2}{CO2}$	Ability to evaluate fore significance of w	ind energy.						
$\frac{003}{004}$	Ability to analyze importance of ocean Energy.							
CO4	Ability to design the role of bio-gas conv	ersion.						
<u>CO5</u>	Ability to investigate geothermal energy.	1 / 1						
	Ability to conduct experiments using mo	dern tools.	ogram	ma Outaama				
Cours	Course Outcomes with bloom's Taxonomy and Trogramme Outcomes							
	Course Outcome	SKIII	10	Taxonom	Tools to			
				y	measure CO			
CO1	Ability to Understand the Need,	Remember/	-	L1/L2	Exam/Assignme			
	importance and scope of non	Understand			nt/Seminar/Quiz			
	conventional and alternate energy							
	resources.							
CO2	Ability to evaluate role significance of	Evaluate	PO4	L5	Exam/Assignme			
	wind energy.				nt/Seminar/Quiz			
<u>CO3</u>	Ability to analyze importance of eccen	Apolyzo	DO3	I A	/Lab/Project			
COS	Finance of ocean	Anaryze	FU2	L4	nt/Seminar/Quiz			
	/Lab/Project							
CO4	Ability to design the role of bio-gas	Design	PO3	L6	Mini			
	conversion.				Project/Assignm			
					ent/Quiz/Lab/Ex			
CO5	Ability to investigate geothermal	Investigate	PO/	15	am Assignment/Lab			
005	energy	Investigate	104		/Exam/Seminar			
	chergy.				/			
			PO5	L3				
CO6	Ability to conduct experiments using	Modern			Lab/Project			
	modern tools.	100ls	octions					
Cours	course Lever As	sessment Que	estions					
1. V	Write a note on importance of non-conventi	onal sources o	of energ	y?				
2.	Explain the principle of alternative sources.		U	•				
3.	With a neat sketch, explain the conventional	1						
and r	Distinguish between the importance of							
4.	preservable resources?							
non i	enewable resources.							
Cours	e Outcome 2 (CO2):							
5. l	Evaluate the significance of wind energy?							
6.]	Derive an expression of Wind Energy Estim	nation. Wind Engrad	Custor	0				
7. 1 8 1	Explain now will you find out the Types of Discuss in detail about the importance of wi	ind energy	system	8.				
Cours	e Outcome 3 (CO3):	ina energy.						
5.	Analyze the development of OTEC plants.							
6.	Find out the Tidal and wave energy.							

- 7. Illustrate the measure of ocean as an energy resource benefit society?
- 8. Explain in detail about the Principle of operation at ocean energy.

Course Outcome 4 (CO4):

- 5. Design a combustion characteristics of bio-gas.
- 6. Elaborate a Principles of Bio-Conversion.
- 7. Discuss about the types of Bio-gas digesters.
- 8. With a neat sketch explain about the Anaerobic/aerobic digestion.

Course Outcome 5 (CO5):

- 1. Find out the geothermal energy utilized?
- 2. How to obtain the geothermal energy resources?
- 3. Explain in detail about the methods of harnessing the energy.
- 4. Discuss in detail about the largest producer of geothermal energy?

ENVIRONMENTAL IMPACT ASSESSMENT

L T P C 3 0 0 3

Objective:

To identify the need to assess major principles and evaluate the impact on environment. To impart knowledge in overall environmental management.

1	6	
MODULE	TOPICS	L (Hrs)
Ι	Impact of development projects, Sustainable development, Need for Environmental Impact Assessment (EIA), Environmental Impact Statement (EIS), EIA capability and limitations, Legal provisions on EIA, EIA regulations in India	5
п	Stages of EIA, Types of EIA Methods of EIA, Check lists, Matrices, Networks, Cost-benefit analysis, EMP,.	9
III	Assessment of Impact on land, water, air, social economic, cultural and biological activities - Mathematical models- Public participation	9
IV	Environmental Audit & Environmental legislation objectives of Environmental Audit, Types of environmental Audit, Audit protocol, stages of Environmental Audit, onsite activities, evaluation of Audit data and preparation of Audit report, Post Audit activities.	9
V	Description of the Baseline Environment: Purposes for defining the Environmental Setting, Selection of parameters, Monitoring of physical environmental parameters, Collection and interpretation of baseline data for various environmental attributes.	9
VI	Case Studies: EIA for Chemical Industry	4
	Total Hours	45

Text Books

- 1. A Chadwick, Introduction to Environmental Impact Assessment, Taylor & Francis, 2007
- 2. Larry W. Canter, Environmental Impact Assessment, McGraw Hill Inc. Singapore, 1996
- 3. Canter, R.L., "Environmental Impact Assessment", McGraw Hill Inc., New Delhi, 1996.
- 4. Shukla, S.K. and Srivastava, P.R., "Concepts in Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.

Reference Books:

- 1. R.Therirvel, E. Wilson, S. Hompson, D. Heaney, D.Pritchard, *Strategic Environmental Assessment*, Earthscan, London, 1992
- 2. Paul, A Erickson, A Practical Guide to Environmental Impact Assessment, Academic Press, 1994
- **3.** John G. Rau and David C Hooten "Environmental Impact Analysis Handbook", McGraw Hill Book Company, 1990.
- **4.** Judith Petts, "Handbook of Environmental Impact Assessment Vol. I & II", Blackwell Science, 1999.

COUR	SE OUTCOMES
The stu	dents will have the
CO1	Ability to understand the concept of sustainable development and environmental impact
	assessment.

CO2	Ability to identify environmental attributes to be considered for the EIA study.								
CO3	Ability to apply suitable methodolog	gy to prepare E	EIA and i	incorporate mi	tigation measures.				
CO4	Ability to evaluate environmental impact assessment reports and assess the risks posing								
	threats to the environment.								
CO5	Ability to apply different methodologies to predict and assess the impacts of project on								
	various aspects of environment.								
Course	e Outcomes Mapping with Bloom's	Taxonomy an	d Progr	amme Outco	mes				
				Bloom's	Assessment Tools				
Course	Outcome	Skill	PO	Taxonomy	to measure CO				
CO1	Ability to understand the concept	Remember/	PO1,	L1/L2	Exam/Assignment/				
	of sustainable development and	Understand	PO6,		Seminar/Quiz				
	environmental impact assessment.		PO7						
CO2	Ability to identify environmental	Understand	PO3,	L3	Exam/Assignment/				
	attributes to be considered for the		PO4,		Seminar/Quiz/Lab/				
	EIA study.		PO7		Project				
<u> </u>		A	DO2	T 4					
003	Ability to apply suitable	Арріу	PO2,	L4	Exam/Assignment/				
	incompare mitigation massives		PO5,		Seminar/Quiz/Lab/				
CO4	A hility to evoluate environmental	Analyza	PO4,	15	Mini				
CO4	Ability to evaluate environmental	Anaryze	PO2,	LS	Milli Droio at/A agignman				
	impact assessment reports and		PO5,		t/Ouiz/Lab/Exam				
	the environment		FU8,		VQuiz/Lab/Exam				
CO5	Ability to apply different	Create	PO2	15	Assignment/Exam/				
	methodologies to predict and	Cicale	PO3		Seminar				
	assess the impacts of project on		PO5		Sommar				
	various aspects of environment		PO9						
	various aspects of chvironillent.		107						

19UC	BIOPROCESS TECHNOLOGY		L	Т	Р	C
COURSEO		3			0	3
COUI •	RSE OI To pro To de bioche	BJECTIVE ovide the students with the basics of bioprocess and bioreactor engineer ovelop bioengineering skills for the production of biochemical produce mical processes.	ering ct u	g. sing i	ntegr	atec
• MOD	To im	part knowledge on scale up of reactors and to develop bioreactor mod	els		тт	Irc
MOD		HISTODICAL DEVELOPMENT OF BIODDOCESS TECHNO		CV		.115
I A Bioprocess principles and operations, generalized process flow sheets. General material balance equation for steady state bioprocess operation, outline of a bioprocess and the various unit operations - upstream and downstream bioprocesses						9
II A MEDIA DESIGN AND STERILIZATION Media requirements for bioprocesses, medium formulation for optimal growth and product formation, design of various commercial media for industrial bioprocess, medium optimization methods, sterilization kinetics, design of batch and continuous thermal sterilization, sterilization of air and filter design, radiation and chemical sterilization)
III A BIOPROCESS STOICHIOMETRY Stoichiometry of microbial growth and product formation, elemental balances, degree of reduction, yield coefficients for biomass and product formation, maintenance coefficient, energetic analysis, oxygen consumption and heat of evolution in aerobic culture, thermodynamic efficiency of growth					ç)
IV	IV A OPERATIONAL MODES OF BIOREACTOR choosing the cultivation method, modifying batch and continuous bioreactors, immobilized cell systems, solid-state fermentations and its applications, chemostat with recycle and fed batch culture, simple structured models, rheology of fermentation fluids, mass transfer in				Ģ)
V A BIOREACTOR SCALE UP Overview of methods for online and offline monitoring of bioreactors, bioprocess control methodologies, various approaches to scale-up including regime analysis and scale-down, scale-up methods by constant P/V and kLa, analysis of alternate bioreactor configurations including cell-recycle, airlift and immobilized-cell bioreactors, problems on scale-up methods				¢,)	
		Total	l He	ours	4	5
Text I 1. 2. Refer 1. 2.	Books Shuler Doran ence Bo Anton Bailey, McGra Peter F	r, Michael L. and Fikret Kargi, Bioprocess Engineering, Prentice Hall A, Pauline of Bioprocess Engineering Principles. Elsevier, 1995 poks A Moser, Bioprocess Technology, Kinetics and Reactors, Springer Ve James E. and David F. Ollis, Biochemical Engineering Fundamer W Hill, 1986.	l, 19 erlag ntals	92. , IInc	l Edit	tion

Science and Technology Books.								
4.	4. Harvey W. Blanch, Douglas S. Clark, Biochemical Engineering, Marcel Dekker, Inc.							
The st								
The st	Understand the basics of bioprocess print	ainlag and loar	n about	hioroactor on	arations			
	A poly opcing principles to systems	cipies and lear	lagical	ostalvata to m	est the needs of			
	the society							
CO3	Analyze and select appropriate bioreacto	r configuration	ns and c	peration mode	es based upon			
GOA	the nature of bioproducts							
CO4	Investigate and select bioreactor equipme	ent for various	industr	application	S			
CO5	Design the bioprocess and scale up the bi	ioreactor syste	m					
CO6	Conduct experiments using modern tools							
Cours	<mark>e Outcomes</mark> Mapping with Bloom's Taxo	onomy and Pr	ogram	me Outcomes				
	Course Outcome	Skill	PO	Bloom's	Assessment			
				Taxonomy	Tools to			
COL	Ability to understand the basics of	Pomombor/		I 1/I 2	Exam/Assignm			
COI	bioprocess principles and learn about	Understand	-	L1/L2	ent/Seminar/Ou			
	bioreactor operations	Chiefstund			iz			
CO2	Ability to apply engineering principles	Apply	PO1	L3	Exam/Assignm			
	to systems containing biological				ent/Seminar/Qu			
	catalysts to meet the needs of the society				iz/Lab/Project			
CO3	Ability to analyze and select appropriate	Analyze	PO2	L4	Exam/Assignm			
	bioreactor configurations and operation				ent/Seminar/Qu			
	modes based upon the nature of				iz/Lab/Project			
<u>CO4</u>	bioproducts Ability to investigate and select	Investigate	DO4	15	Mini			
004	bioreactor equipment for various	Investigate	r04	LJ	$\frac{WIIII}{Project/Assign}$			
	industrial applications				ment/Quiz/Lab/			
					Exam			
CO5	Ability to design the bioprocess and	Design	PO3	L6	Assignment/La			
	scale up the bioreactor system				b/Exam/Semin			
	1				ar			
CO6	Ability to conduct experiments using	Modern	PO5	L3	Lab/Project			
	modern tools.	Tools						

19UCH915FERMENTATION TECHNOLOGY				Т	Р	С
AIM: The process of knowledge required for fermentation and the industrial applications and recent technological advances 2 1						3
MO] I	DUL E	TOPICS			LH	lrs
I A INTRODUCTION TO FERMENTATION PROCESSES Microbial biomass –Microbial Enzymes – Microbial metabolites – Recombinant products – Transformation Process –Microbial growth – Isolation and preservation and improvement of industrially important micro organism.					9	
II A INSTRUMENTATION AND CONTROL Measurement of process variables – Temperature and its control – Flow measurement and control –Gases and Liquids – Pressure measurement and control –Cenline analysis –Control System –Combination of Control Systems– Computer application in termentation technology					9	
III RECOVERY AND PURIFICATION OF FERMENTATION PRODUCTS Removal of Microbial cells – Foam Separation – Precipitation Filtration – Different Filtration process –Centifugation – Different centrifuge cell description – Different methods – Solvent recovery – Superfluid extraction – Chromatography – Membrane processes – Drying – Crystallization – Whole growth processing.					9	
IV A EFFLUENT TREATMENT Strength of fermentation effluent – Treatment and disposal – Treatment Processes – Physical, chemical and biological –Aerobic process – Anareobic treatment.					9	
V A FERMENTATION ECONOMICS Introduction – Isolation of micro organisms of industrial interest – Strain improvement – Market potential – Plant and equipment – Media – Air sterilization –Heating and cooling –Recovery costs.					9	
			To	otal Hours	45	5
Text Books 1. Principles of fermentation Technology P.Stanbury Buttuworth Hanman – 1999.						

2. Fermentation and Biochemical Engineering Handbook – C.C Haber. William Andrew II Edition 2007. **Reference Books**

1. Bioprocess Engineering Hydersen B.K Nancy A.dela K.L.Nelsen Wiley Interscience,1994.

COURSE OUTCOMES									
The stu	The students have the								
CO1	Ability to the various reactor	ors used in Industries.							
CO2	2 Ability to apply the selection of media for microbial growth.								
CO3	3 Ability to identify the strain improvement and preservation of cultures.								
CO4	Ability to analyze the Upstr	ream as well as process	sing in	volved in fe	ermentation industries.				
CO5	Ability to the downstream a	apply as well as proce	ssing i	nvolved in f	ermentation industries.				
CO6	Ability to conduct experime	ents using modern tool	s.						
Course	e Outcomes Mapping with I	Bloom's Taxonomy a	nd Pro	ogramme O	utcomes				
	Course Outcome	Skill	PO	Bloom's	Assessment Tools to measure CO				
				Taxono					
CO1	Ability to the various	Remember/Underst	_	L1/L2	Exam/Assignment/Seminar/Quiz				
001	reactors used in	and							
	Industries.								
CO2	Ability to apply the	Apply	PO	L3	Exam/Assignment/Seminar/Quiz/Lab/P				
	selection of media for	11.7	1		roject				
	microbial growth.								
CO3	Ability to identify the	Apply	РО	L3	Exam/Assignment/Seminar/Quiz/Lab/P				
	strain improvement and		1		roject				
	preservation of								
	cultures.								
CO4	Ability to analyze the	Analyze	PO	L4	Mini				
	Upstream as well as		2		Project/Assignment/Quiz/Lab/Exam				
	processing involved in								
	fermentation industries.								
CO5	Ability to the	Apply	PO	L3	Assignment/Lab/Exam/Seminar				
	downstream apply as		1						
	well as processing								
	involved in								
	fermentation industries.								
CO6	Ability to conduct	Modern Tools	PO	L3	Lab/Project				
	experiments using		5						
	inodern tools.	Course Level Ass	ossma	nt Auestier					
Course Level Assessment Questions									

Course Outcome 1 (CO1):

- 1. Write a note on Microbial metabolites?
- 2. Explain the principle of Microbial growth?
- 3. With a neat sketch, explain the types of Microbial biomass?
- 4. Distinguish between Isolation and improvement of industrially important micro organism?

Course Outcome 2 (CO2):

- 1. Derive an method used for a selective media in microbiology.
- 2. Explain how will you find out the selective media can be used to identify microorganisms?
- 3. Find out the use of solid media contribute to the study of microorganisms.
- 4. Discuss in detail about the purpose of peptone in the media.

Course Outcome 3 (CO3):

- 1. Enumerate the methods of strain improvement?
- 2. Find out the methods used for preservation of microbial cultures.
- 3. Explain in detail about the technique is used to different methods of maintaining cultures.
- 4. Discuss in detail about the preserve fungal culture.

Course Outcome 4 (CO4):

- 1. Analyze the mean by upstream processing using fermentation products.
- 2.Identify the following is included in upstream processing?
- 3. How will you find out the process is also called product recovery?
- 4. Explain in detail about the upstream manufacturing using fermentation effluent.

Course Outcome 5 (CO5):

1.Expain in detail about the downstream processing in fermentation?

2.Discuss in detail about the major processes are involved in downstream processing?

3.Derive an bioprocessing processing involved in fermentation industries.

4.Discuss in detail about the material used in Isolation of micro organisms

	19UCH916 PROCESS OPTIMIZATION	L	Т	Р	С	
		3	0	0	3	
AIM						
To study v	arious models to optimize chemical processes					
	2 S			.1 .	1 .	
• 10	provide an overview of state-of-the-art optimization algorithms, the	theoretical	principle	s that un	derpin	
	describe and formulate optimization problems and their use for solvi	na sovorol	tupos of	aractical	1.,	
• 10 rele	event optimization problems arising in process systems engineering	lig several	types of	Jactical	Iy	
MODULE	TOPICS			L	Hrs	
	FORMULATION OF OPTIMIZATION PROBLEMS					
Ι	Mathematical concepts of optimization. Taylor expansion, Gradier	nt, Hessian	etc.		6	
	Quadratic functions. Convex functions and sets. Gaussian eliminat	ion method	1.			
	MODELS FOR OPTIMIZATION					
II	Selection of function, degrees of freedom, factorial experimental d	esign, cons	straints		5	
	in model					
	LINEAR AND NONLINEAR LEAST SQUARE PROBLEMS					
	One-dimensional search - Methods requiring derivatives (Newto	on-Raphson	n, Secant		<i>.</i>	
111	etc) Region elimination methods (Interval halving, Golden s	ection) Po	lynomial		6	
	approximations (quadratic & Cubic)					
	MULTIVARIABLE OPTIMIZATION-I					
IV	Unconstrained multivariable optimization - Graphical visualization	n (contour	plots, 3D		6	
1 V	plots) - Gradient based methods (Steepest descent, conjugate dir	ection, and	l Newton		0	
	methods)					
	MULTIVARIABLE OPTIMIZATION-II					
V	Linear programming (LP) - Graphical solution - Simplex M	ethod - S	ensitivity		6	
	analysis - Concept of duality - Introduction to interior-point metho	d.				
	Nonlinear programming (NLD) with constraints. I agrange multin	liors Gran	hical			
VI	illustration of NLP problems - KKT necessary and sufficient condi	tions - Ou	adratic		8	
•	programming - Successive linear and quadratic programming. Inte	ger and mi	xed		0	
	integer programming. (IP and MIP) - Graphical solution - Branch	and bound	methods.			
	DYNAMIC PROGRAMMING					
	Dynamic programming - Minimum cost routing problems - Solution	on of separa	able			
VII	nonlinear programming problems. Global optimization problems	Introducti	on to		8	
	multi objective optimization problems- Pareto optimal solutions (g	raphical				
	illustration)	T 4	1 11		4 =	
	Course Outcomes	Tota Pleam's	u Hours	· · · ·	+5	
CO1	Identify different types of optimization problems	DIOOIII S	Under	tand		
CO2	Solve various multivariable optimization problems		Ann	lv		
CO3	CO3 Test different types of Hypotheses Analyze					
CO4	CO4 Solve problems by using least square analysis. Apply					
CO5 organize Correlation and Regression create						
CO6 Solve optimization using software tools. Appl						
Text Books						
1. T. F. Edger	, D. M. Himmelblau, and L. S. Lasdon, Optimization of chemical pro-	ocesses by	McGraw	-Hill, Se	cond	
edition, 2015.						
Reference Bo	ooks	1 11711	0.0			
1. Singiresu S Rao, 'Engineering Optimization: Theory and Practice, 4th Edition, John Wiley & Sons Ltd., 2009						

2. F. S. Hillier, and G. J. Lieberman, Introduction to operations research by McGraw-Hill, Seventh edition 2001.3. Mohan C. Joshi and Kannan M. Moudgalya , 'Optimization: Theory and Practice', Alpha Science International Limited, 2004

19UCH917 QUALITY MANAGEMENT FOR CHEMICAL								
ENG	GINEE	RS	L	Т	Р	С		
OBJ	ECTI	VES						
The	course	is aimed to						
Whe	n a qua	lity management system is to ensure every time a process is	2	1	Δ	3		
perfo	ormed,	in a consistent manner. If there are process issues or	2	1	U	5		
oppo	ortunitie	es this is then fed into the quality management system to						
ensu	re conti	inuous improvement.						
MO	DUL	TODICE			тт			
	E	TOPICS				lrs		
		INTRODUCTION TO QUALITY MANAGEMENT						
T	Δ	Definitions - TOM framework, benefits, awareness and obsta	cles – Qua	ality -	9)		
-	1	vision, mission and policy statements - Customer Focus - cus	tomer per	ception of	9			
		quality, Translating needs into requirements, customer retention	on. Dimei	isions of				
		PRINCIPLES AND PHILOSOPHIES OF	ΟΠΥΙ	ITV				
		MANACEMENT	QUAI	JII I				
		Quarties of the contributions. Strategic quality planning						
		Councils – Employee involvement - Motivation Empowerm	Quality ent Team	and				
Π	Α	Teamwork, Quality circles Recognition and Reward, Perform	mance	and	9			
	1	appraisal - Continuous process improvement - PDCA cycle,	5S, Kaize	en -				
		Supplier partnership - Partnering, Supplier selection, Supplie	r Rating.					
		STATISTICAL PROCESS CONTROL AND PROCESS	CAPABII	LITY				
		Meaning and significance of statistical process control (SPC)	- construc	ction of				
тт	Α	control charts for variables and attributed - Process capability	- meaning	g,	0			
111		Significance and measurement - Six sigma concepts of process Reliability concepts - definitions, reliability in series and para	s capabili	ty - uct life	9			
		characteristics curve - Business process re-engineering (BPR)	les					
		applications, reengineering process, benefits and limitations	, h.m.					
		TOOLS AND TECHNIQUES FOR QUALITY MANAGE	EMENT					
	Δ	Quality functions development (QFD) - Benefits, Voice of cu	istomer, in	formation	_			
IV	11	organization, House of quality (HOQ), building a HOQ, QFD	process.	Failure	9			
		ollar itv systems						
	Δ	Need for ISO 9000 - ISO 9001-2008 Quality System - Eleme	nts					
V	11	Documentation, Quality Auditing - OS 9000 - ISO 14000 - C	oncepts.		9			
			To	otal Hours	45	5		
Text Books								

1. Dale H. Besterfiled, et at., "Total quality Management", Pearson Education Asia, Third Edition, Indian Reprint, (2006).

Reference Books

1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.

2.Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.

3.Janakiraman. B and Gopal .R.K., "Total Quality Management – Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

		COURSE	OUT	CC	OMES					
The stu	idents have the									
CO1	Ability to identify framewo	orks quality manageme	ent fo	r cl	hemical eng	ineers.				
CO2	Ability to evaluate the evol	ution of quality manag	gemei	nt f	for chemical	l engineers.				
CO3	Ability to ascertain and ana philosophy.	lyze identify the featu	ires of	f qı	uality mana	gement for chemical engineer and				
CO4	CO4 Ability to choose and design derive tools for identity at a solving quality problem.									
CO5	CO5 Ability to select & investigate the knowledge of quality management in their field of use.									
CO6	Ability to conduct experime	ents using modern too	ls.							
Cours	e Outcomes Mapping with	Bloom's Taxonomy a	and P	ro	gramme O	utcomes				
Course Outcome Skill PO Bloom's Assessment Tools to measure Taxono my						Assessment Tools to measure CO				
CO1	Ability to identify frameworks quality management for chemical engineers.	Remember/Underst and	-	L	_1/L2	Exam/Assignment/Seminar/Quiz				
CO2	Ability to evaluate the evolution of quality management for chemical engineers.	Evaluate	Po 4	L	.5	Exam/Assignment/Seminar/Quiz/Lab/ Project				
CO3	Ability to ascertain and analyze identify the features of quality management for chemical engineer and philosophy.	Analyze	Po 2	I	.4	Exam/Assignment/Seminar/Quiz/Lab/ Project				
CO4	Ability to choose and design derive tools for identity at a solving quality problem.	Design	Po 3	L	.6	Mini Project/Assignment/Quiz/Lab/Exam				
CO5	Ability to select & investigate the knowledge of quality management in their field of use.	Investigate	Po 4	L	.5	Assignment/Lab/Exam/Seminar				
CO6	Ability to conduct experiments using modern tools.	Modern Tools	Po 5	L	.3	Lab/Project				
	Course Level Assessment Questions									

Course Outcome 1 (CO1):

- 5. Write a note on importance of Quality management & its importance.
- 6. Explain the principle of Four stages of quality management.
- 7. With a neat sketch, explain about the three levels of quality management.
- 8. Distinguish between the importance role of quality management.

Course Outcome 2 (CO2):

- 9. Evaluate the principles of quality evolution at management.
- 10. Derive an expression of Elements of Quality management.
- 11. Explain how will you find out the PDCA cycle.
- 12. Discuss in detail about the four stages of quality management.

Course Outcome 3 (CO3):

- 9. Analyze the construction of control charts for variables.
- 10. Find out the Six sigma concepts of process capability.
- 11. Illustrate the measure of significance of statistical process control.
- 12. Explain in detail about the principle of product life characteristics curve.

Course Outcome 4 (CO4):

- 9. Design a tools and techniques for quality improvement?
- 10. Elaborate a Principles of Quality functions development.
- 11. Discuss about the different types of Failure mode effect analysis.
- 12. With a neat sketch explain about the following quality tools to identify quality problem.

Course Outcome 5 (CO5):

- 5. Find out the Elements of quality systems.
- 6. How to obtain the Implementation of quality systems.
- 7. Explain in detail about the use of quality systems.
- 8. Discuss in detail about the Requirements of quality systems.

L T P C 3 0 0 3

Course Objectives:

To understand the importance of process equipment geometry and to provide concepts, methods and analysis to translate various chemical processes from laboratory scale to plant scale.

MODILE	TOPICS	L Hrs					
MODULE	Fundamentals of Cools and Dimensional Analysis Deinsials of	LIIIS					
I	Fundamentals of Scale up and Dimensional Analysis: Principles of Similarity, Pilot Plants and Models, Introduction to Scale-up Methods, Dimensional Analysis, Regime Concept, Similarity Criterion and Scale up	9					
	Methods used in Chemical Engineering.						
	Fluid-fluid Reactors: Scale-up considerations in packed bed absorbers and						
II	Prediction of performance in large equipment, Practical commercial	9					
	experience, Problem areas.						
	Mixing Processes: Scale-up relationships, Scale-up of polymerization						
Ш	units, Continuous stages gas-liquid slurry processes, Liquid-liquid	9					
	emulsions. Typical Problems in Scale-up of Heat Transfer Equipment.						
	Solid-Liquid Separation Processes: Fundamental considerations, Small						
	scale studies for equipment design and selection, Scale-up techniques,						
IV	Uncertainties.	9					
	Continuous Mass Transfer Process: Fundamental considerations scale-up						
	procedure for distillation, Absorption, Stripping and extraction units.						
	Reaction Vessels: Scale-up Techniques available for Tubular Reactor,	0					
V	CSTR and Catalytic Reactors. Pseudo-nomogeneous and neterogeneous models. Two-dimensional models. Scale up considerations	9					
	Total Hours	15					
Toyt Books.		43					
1 M 71	alternit, Seale up in Chemical Engineering, Wiley, VCII (2006)						
1. MI.ZIO 2 DE I	 M. Zlokarnik, Scale-up in Chemical Engineering, Wiley-VCH (2006). D.E. Jakastana and M.W. Theira. Dilat Planta Madala and Scale and Matheda in Chamical 						
2. K.E. Johnstone and M. W. Thing, Flot Flants, Models and Scale-up Methods III Cheffical Engineering McGraw-Hill (1957)							
Reference Books:							
1 C Div	all and S. Johnston, Scaling up: the Institution of Chemical Engineers and the	Rise of a					
1. C. Divall, and S. Johnston, Scaling up: the Institution of Chemical Engineers and the Rise of New Profession Springer (2000)							

2. A. Bisio, and R.L. Kabel, Scale-up of Chemical Processes, John Wiley (1985).

COURSE OUTCOMES				
The stu	dents have the			
CO1	Ability to understand about the basic pilot plants, models, similarity and scale up methods			
CO2	Ability to implement scaling up models for liquid and solid systems.			
CO3	Ability to compare the methods and techniques of scaling for various unit operations			
CO4	Ability to select suitable scaling technique for mixing operations.			
CO5	Ability to develop a model to scale up fluid- fluid catalytic reactors.			

Course Outcomes	Skill	PO	Blooms	Assessing tools
Ability to understand about the basic	Remember/Understan	PO 11	L1/L2	Assignment/Exa
pilot plants, models, similarity and	d			m/ Quiz/
scale up methods				Seminar
Ability to implement scaling up	Apply	PO1	L3	Assignment/
models for liquid and solid systems.				Exam/ Project
Ability to compare the methods and	Analyse	PO2,	L4	Assignment/
techniques of scaling for various unit		PO7,		Exam/ Quiz
operations		PO11		
Ability to select suitable scaling	Investigation	PO2,	L5	Exam/
technique for mixing operations.		PO4,		Quiz/Assignme
				nt/Seminar
Ability to develop a model to scale	Design	PO3,	L6	Model / Project
up fluid- fluid catalytic reactors.				-

10ΠCH020 ΕΙ ΠΙΣΙΖΑΤΙΟΝ ΤΕCΗΝΟΙ ΟΩΥ		L	Т	Р	С	
					3	
AIM		I	1			
To study th	he fluidization phenomena, fluidized bed regimes and models.					
OBJECTIVE	ES					
 To teach the concept of fluidization, application and characterization of fluidization and analy hydrodynamic aspects of fluidization process. 						
MODULE TOPICS						
INTRODUCTION TO FLUIDIZATION						
I Concept of Fluidization - Special Features of Fluidization - Comparison with other Contacting Methods - Advantages and Disadvantages of Fluidized Beds - Industrial Applications of Fluidized Beds - Historical Highlights - Physical Operation - Chemical Operations.						
II CHARACTERIZATION OF FLUIDIZATION I II Gross Behavior of Fluidized Beds – Minimum and Terminal Velocities in Fluidized Beds						
CHARACTERIZATION OF FLUIDIZATION IIIIIGeldart Classifications of Particles – Mapping of Fluidization Regions – Design of Distributors – Power Consumption					6	
IV BUBBLE MECHANICS IN FLUIDIZED BEDS Bubbles in Dense Beds - Single Rising Bubble - Coalescence and Splitting of Bubbles – Bubble Formation above a Distributor. Bubbling Fluidized Beds - Experimental Findings - Estimation of Bed Properties - Bubbling Bed Model					7	
V ENTRAINMENT AND ELUTRIATION Free Board Behavior - Entertainment from Tall and Short Vessels. Constant Approach. Flow Pattern of Gases through Fluidized Beds - Solid Movement - Mixing, Segregation and Staging					6	
VI HEAT TRANSFER IN FLUIDIZED BEDS Heat Transfer between Fluid and Solid - Determination and Interpretation of Heat Transfer. Heat Transfer between Fluidized Beds and Surface - Experimental Findings and Theoretical Studies.						
VII MISCELLANEOUS SYSTEMS Conical fluidized bed, Inverse fluidized bed, Draft tube systems; Semi fluidized bed systems. Annular systems and typical applications						
		Tot	al Hours	4	45	
	Course Outcomes	Bloom's	Level			
CO1	Explain the basics of fluidization		Unders	tand		
CO2	Identify the various industrial applications of fluidization. Apply					
CO3	CO3 Analyze the various fluidization regimes, classification of Analyze					
CO4	Construct the K-L hubbling model					
CO5	Test the staging of fluidized beds, and calculation of the		App	ly		
CO6	Construct flow pattern of gases through fluidized bed create					

10IICH021 FYTRACTIVE METALLURCY		L	Τ	Р	С	
190011921	EXTRACTIVE METALLORGI	3	0	0	3	
COURSE OF	BJECTIVE:					
Student will be in a position to ascertain the method of extraction of a particular metal and als understands the importance of recovery of byproducts during extraction						
MODULE	TOPICS			LH	Irs	
I	INTRODUCTION Classification of ores, basics of pyrometallurgy, hydrom electrometallurgy calcination, roasting, and type of thermodynamics of extraction, Ion exchange.	netallu roas	ırgy, ting,	9)	
П	UNIT PROCESSES IN PYRO METALLURGY: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction,IIMetallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Liquation and Cupellation. Small problems related to pyro metallurgy					
III	UNIT PROCESSES IN HYDROMETALLURGY: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bioleaching: Precipitation and Cementation process. Recovery of Au from leach liquors, recovery of Nickel and Cobalt. Small problems relate to hydrometallurgy.					
InterventionInterventionInterventionUNIT PROCESS IN ELECTROMETALLURGY: Faraday's Laws of Electrolysis, concept of overvoltage, limiting current density, total cell voltage, series and parallel electrical circuits in refining, aqueous and fused salt electrolysis, electro refining of common metals like Cu, Zn, Au, Ni, Al, Mg etc. Electroplating. Small related problems to Electrometallurgy)	
V	PRODUCTION METHODS: Simplified flow sheets for the extraction of Nickel, Magnesium, Tin, Gold, Silver, Uranium and Titanium. Non-ferrous metal industry in India.					
	Tot	al Ho	ours	4	5	
Text books:¬						

1. Principles of Extractive Metallurgy, Terkel Rosenqvist, McGraw-Hill Book Company

2. Principles of Extractive Metallurgy, H. S. Ray and A. Ghosh, WEL Publishing

REFERENCES:

1. Extractive Metallurgy of Copper, W.G. Davenport, A.K. Biswas, PERGAMON publishing company

2. Handbook of Extractive Metallurgy: Fathi Habashi; Wiley-VCH New York, 1967.

COURSE OUTCOMES

The students have the ability to understandCO1Ability to understand and classify various techniques, unit process and operations used in

	metal extraction and refining.
CO2	Ability to apply the fundamental knowledge in design of an extraction methodology and
	process flow sheets.
CO3	Ability to differentiate the different types of metallurgical process
CO4	Ability to select the correct process routes, extraction method and be able to optimize and
	control them.
CO5	Ability to develop computational and mathematical abilities to be applied for process design
	and control.

Course Outcomes	Skill	РО	Blooms	Assessing tools
Ability to understand and classify	Remember/Understan	PO6	L1/L2	Assignment/Exa
various techniques, unit process and	d			m/ Quiz/
operations used in metal extraction				Seminar
and refining.				
Ability to apply the fundamental	Apply	PO1,	L3	Assignment/
knowledge in design of an extraction		PO2,		Exam/ Quiz
methodology and process flow		PO3		
sheets.				
Ability to differentiate the different	Analyse	PO3	L4	Assignment/
types of metallurgical process.				Exam/ Quiz
Ability to to select the correct	Investigation	PO2,	L5	Exam/
process routes, extraction method		PO4,		Quiz/Assignme
and be able to optimize and control				nt/Seminar
them.				
Ability to develop computational and	Design	PO5,	L6	Assignment/Exa
mathematical abilities to be applied		PO9		m/Seminar/
for process design and control.				Project

19	L	Т	Р	С			
AIM This course provides basic knowledge on various analytical instruments and methods for accurate chemical analysis.21						3	
MODULE TOPICS							
I A UV SPECTROSCOPY AND NMR SPECTROSCOPY Characteristics of electromagnetic radiations - Definition-wave length, wave number, frequency, energy. The absorption laws -Theory of electronic spectroscopy –Double beam spectrophotometer. Chromospheres - Auxochrome - Types of absorption bands – Absorption and intensity shifts - Applications. Theory - number of signals - Instrumentation – Chemical shift - Factors influencing chemical shift - Spin - Spin coupling - Applications.						9	
II A IR SPECTROSCOPY AND MASS SPECTROSCOPY IR SPECTROS COPY Theory - Vibrational frequency - Number of fundamental vibrations - Hook's law Scanning of IR spectrum– Applications.Basic principles - Theory - Instrumentation - Nitrogen rule - Molecular ion - McLafferty rearrangement – Applications.						,	
IIIASEPARATION METHODS Principles of solvent extraction - Extraction techniques - Analytical applications. Principles of chromatography - Different types - Thin layer, column and gas chromatography. Radio chemical methods - Activation analysis - Isotopic dilution methods.)	
IVATHERMAL METHODS AND ELECTROCHEMICAL METHOD Thermogravimetry - Factors influencing the thermogram - TGA instrument - Applications of TGA – DTA- Definition – Instrumentation. Thermal analysis of calcium oxalate monohydrate and calcium acetate monohydrate - Applications of DTA. FLUORIMETRIC METHOD - Fluorescence - Phosphorescence –Theory – Fluorimeter.						,	
V	V A ELECTROCHEMICAL METHOD Principles of polarography - Half wave potential - Factors affecting the limiting current –Applications of polarography.)	
		Tot	al H	ours	4	5	

Text Books

1. Sharma B.K., Instrumental methods of chemical analysis, Eighteenth Edition, GOEL publishing House. 2002.

2.Ewing G.W., Instrumental methods of Chemical Analysis, Fifth Edition, McGraw Hill, New York, 1992.

3.Chatwal, Anand, Instrumental Methods of Chemical Analysis, Seventh Edition, Himalaya Publishing House. 2005.

4. Vogel's textbook of Quantitative Chemical Analysis, Fifth Edition. ELBS Publications, 2007.

Reference Books

1.Skoog D.A., - Pinciples of Instrumental Analysis, Sixth Edition, Saunders College Publication, 2007.

2.Williard H.H., Meritt L.C and Dean J.H., - Instrumental Methods of Analysis, Sixth Edition, 1990.

COURSE OUTCOMES						
The stu	dents have the					
CO1	Ability to identify the structure of the org	anic compour	d from	the spectrosc	opic studies, no.	
	of Hydrogen atoms and the position of hy	drogen atoms	in a m	olecule.		
CO2	Ability to evaluate types of precipitants, t	heir advantag	es and o	disadvantages	; theories of	
	precipitation; general rules for precipitati	on and types o	of crucil	bles.		
CO3	Ability to analyze the thermal stability from	om TGA, exot	hermic	& endotherm	nic reactions of	
	the sample from DTA.					
CO4	Ability to analyze the concentration of th	e solutes in a 1	nixture	using solven	t extraction,	
<u> </u>	chromatography methods and polarograp	hic studies.				
CO5	Ability to predict the nature of the organi	c compounds	and the	functional gr	roups from the	
COL	various spectroscopic techniques.	1 . 1				
CO6	Ability to conduct experiments using mo	dern tools.		0.4		
Course	Outcomes Mapping with Bloom's Taxo	nomy and Pr	ogram	me Outcome	S	
	Course Outcome	Skill	PO	Bloom's	Assessment	
				Taxonom	Tools to	
001		D 1 /		<u>y</u>	measure CO	
COI	Ability to identify the structure of the	Kemember/	-	L1/L2	Exam/Assignme	
	organic compound from the	Understand			nt/Semmar/Quiz	
	spectroscopic studies, no. of Hydrogen					
	atoms and the position of hydrogen					
	atoms in a molecule.					
CO2	Ability to evaluate types of	Evaluate	PO4	L5	Exam/Assignme	
	precipitants, their advantages and				nt/Seminar/Quiz	
	disadvantages; theories of				/Lab/Project	
	precipitation; general rules for					
	precipitation and types of crucibles.					
CO3	Ability to analyze the thermal stability	Analyze	PO2	L4	Exam/Assignme	
	from TGA, exothermic & endothermic	-			nt/Seminar/Quiz	
	reactions of the sample from DTA.				/Lab/Project	
CO4	Ability to analyze the concentration of	Analyze	PO2	L4	Mini	

	the solutes in a mixture using solvent				Project/Assignm					
	and polarographic studies.				am					
CO	Ability to predict the nature of the	Investigate	PO4	L5	Assignment/Lab					
	organic compounds and the functional	C C			/Exam/Seminar					
	groups from the various spectroscopic									
	techniques.									
CO	6 Ability to conduct experiments using	Modern	PO5	L3	Lab/Project					
	modern tools.	Tools								
	Course Level Assessment Questions									
Cou	rse Outcome 1 (CO1):				_					
1.	Write a note on spectroscopy used to determ	ine the structu	ire of a	n unknown co	ompound.					
2.	Explain the principle of basic principle behi	nd organic spe	ectrosco	opy.						
<i>3</i> .	With a neat sketch, explain about the spectro	ometer.								
4.	4. Distinguish between the components of spectrometer.									
1 Evaluate the different types of gravimatric methods										
$\frac{1}{2}$	 Evaluate the different types of gravilletric methods. Derive an expression of Hook's law Scanning of IP spectrum. 									
3	2. Derive an expression of mook's law Scalining of it's spectrum. 3. Explain how will you find out the Vibrational frequency									
4.	4 Discuss in detail about the Mass Spectroscopy									
Cou	Course Outcome 3 (CO3):									
1.	1. Analyze the Principles of chromatography.									
2.	2. Find out the thermal stability using Radio chemical methods.									
3.	3. Illustrate the measure thermal stability of Isotopic dilution methods.									
4.	4. Explain in detail about the Principles of solvent extraction.									
Cou	rse Outcome 4 (CO4):									
1.	Elaborate in detail about the Factors influence	ing the therm	ogram.							
2.	How do you find out the concentration of a c	alibration cur	ve.							
3.	3. With graphical representation find out the Factors influencing thermogram.									
4.	Analyze the description of Fluorescence and	Phosphoresce	ence.							
Course Outcome 5 (CO5):										
1.	Identify the detector is used in polarographic	method.								
2.	Find out the Factors affecting the limiting cu	rrent.								
3.	3. Explain in detail about the Principles of polarography.									
4.	4. Discuss in detail about the polarographic analysis.									

101/01/022		L	Т	Р	С			
19UCH922	NANO IECHNOLOGY		0	3	3			
AIM	AIM							
To provid	de an understanding of the various aspects of Waste to Ene	rgy.						
OBJECTIV	ES				.1			
The obje	ctive of the course is to provide insights into waste manage	ement opt	ions by :	reducin	g the			
waste destin	ed for disposal and encouraging the use of waste as a resol	arce for a	Iternate	energy				
production MODULE	TODICS			T	T TT			
MODULE	JLE TOPICS							
	INTRODUCTION TO NANOVIATERIALS Properties of meterials & nenometerials role of size in no							
	nanoparticles semiconducting panoparticles panowires							
Ι	auantum	ig nanoparticles, nanowires, nanociusters,						
	yells, conductivity and onhanced estabutic activity compared to the same							
	materials in the macroscopic state							
	CONFINEMENT AND TRANSPORT IN NANOSTDUCTUDE							
	Current, Reservoirs and Electron channels, Conductance	formula f	or					
II	II nanostructures. Quantized conductance. Local density of states. Ballistic							
	transport. Coulomb blockade. Diffusive transport. Fock s							
	ELECTRONIC PROPERTIES:	L						
	Free electron theory of metals, Band theory of solids, Bloch theorem							
	Kroning-Penne model, Metals and Insulators, Semiconductors:							
111	Classification, Transport properties, Size and Dimensionality effects,							
Band structures, Brillouin zones, Mobility, Resistivity, Relaxation tim								
	Recombination centers, Hall effects.							
	FABRICATION OF NANOMATERIALS BY	Y PHY	SICAL					
	METHODS							
IV	Inert gas condensation, Arc discharge, Plasma arc technique, RF plasma,							
11	MW plasma, Ion sputtering, Laser ablation, Laser pyrolysis, Ball Milling,							
	Molecular beam epitaxy, Chemical vapour deposition me	thod and	Electro					
	deposition.							
	NANOCOMPOSITES							
\mathbf{V}	An Introduction: Types of Nanocomposite (i.e. metal oxide, ceramic,							
	glass and polymer based); Core-Shell structured							
	Superhard Nanocomposite: Synthesis, applications and milestones							
	Course Outcomes	Ploom?		-	+3			
CO1	Learn a broad foundational knowledge of the Concept	Rom	ember/I	Inderet	and			
COI	of vector and scalar fields	Kem		Jucista	anu			
CO2	Apply the students the essential role of Nanoscience	Annl		lv	v			
CO3	Acquire an understanding the Nanoscience and Appl		vse					
000	Annual Annua							
CO4	CO4 Evaluate the nanostructure materials. Eval				late			
CO5	D5 Create the Nanoparticle based Drug Delivery. Crea				te			
Toyt Doole								
1 Nonoohor	nistry. A chamical approach to performatorials by C. A. Ori		Aroonou	I+ T				
1. Nanochemistry: A chemical approach to nanomaterials by G. A. Uzin, A. C. Afesnault, L. Codometriri, PSC								
Publishing								
2. A Chemical Approach to Nanomaterials – Roval Society of Chemistry, Cambridge UK 2005								
Reference F	Books	ay, cum	11450 0	LL 2003	•••			

 Principles of Quantum Mechanics 2nd ed. - R. Shankar
 Quantum wells, Wires & Dots,: Theoretical & Computational Physics of Semiconductors Nanostuructures, Paul Harrison.

Course Outcomes	Skill	РО	Blooms	Assessing tools
Learn a broad foundational knowledge of the Concept of vector and scalar fields.	Remember/Understand		L1/L2	Assignment/Exam/ Quiz/ Seminar
Apply the students the essential role of Nanoscience	Apply	PO1	L3	Assignment/ Exam/ Quiz
Acquire an understanding the Nanoscience and Applications	Analyse	PO2	L4	Assignment/ Exam/ Quiz
Evaluate the nanostructure materials.	Evaluate	PO3	L5	Exam/ Quiz/ Assignment/Seminar
Create the Nanoparticle based Drug Delivery.	Create	PO4	L6	Assignment/Exam/ Seminar
19UCH924

MODERN SEPARATION PROCESS

 T
 P
 C

 0
 0
 3

L

3

COURSE OBJECTIVE:

COURSE OF		
To enable the	students to learn the principle and technical concept of advanced separation pro	ocesses.
MODULE	TOPICS	L Hrs
Ι	Fundamentals of Separation process & Filtration Review of conventional processes, Recent advances in separation techniques based on size and surface properties. Characteristics and Mechanism of Separation, Feasibility of Separation Processes. Theory and Selection of Equipment for Filtration Process - Cross Flow, Electro, Dual Functional Filters.	9
Π	Membrane process: Theory of Membranes Process, Types and Choice of Membranes, Types and Relative Merits of Membrane Modules.	9
ш	Application of Membrane process: Principle and Applications of Micro filtration, Ultra filtration, Nano Filtration and Reverse Osmosis; Dialysis and Electro Dialysis; Pervaporation, lyophilsation Ceramic- Hybrid process and Biological Membranes.	9
IV	Other separation process: Principle and Applications of Ion Exchange, Chromatography, Affinity Chromatography and Immuno Chromatography, Ion Exchange Chromatography and Eletrodialysis, Electrophoresis, Dielectrophoresis,	9
V	Current Trends: Principles and Applications of Supercritical Fluid Extraction, Zone melting, Reversible Chemical Complexation, Foam Separation, Thermal Diffusion, Cryoseperations.	9
	Total Hours	45
Text Books		

1. Seader, J.D., Ernest J.Henley, Keith Roper D., -Separation Process Principles, 3rd Edition, Wiley, 2010

2. Kaushik Nath, Membrane separation processes, First Edition, Prentice Hall publishers, 2008.

Reference Books

- 1. Schoen H.M., —New Chemical Engineering Separation Techniques, Interscience Publishers, 1972.
- 2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol. I and II, 4th Edition, Asian Books Pvt. Ltd., India, 1998.
- 3. King, C. J., "Separation Processes", Tata McGraw Hill, 1982.

	COURSE OUTCOMES					
The stu	dents have the					
CO1	Ability to classify the separation processes for new and innovative applications and the					
	novel techniques of filtration					
CO2	Ability to apply the latest concepts like super critical fluid extraction, per evaporation and					

	lyophilisation in chemical process industries.
CO3	Ability to compare different membrane separation processes and its application in process
	industries
CO4	Ability to select the suitable separation technique for solid and liquid systems.
CO5	Ability to exhibit the skill to develop membrane process, adsorption techniques and inorganic
	separations.

Course Outcomes	Skill	PO	Blooms	Assessing tools
Ability to classify the separation	Remember/Understan	PO 11	L1/L2	Assignment/Exa
processes for new and innovative	d			m/ Quiz/
applications and the novel techniques				Seminar
of filtration				
Ability to apply the latest concepts	Apply	PO1,	L3	Assignment/
like super critical fluid extraction,		PO5		Exam/ Project
per evaporation and lyophilisation in				
chemical process industries.				
Ability to compare different	Analyse	PO7	L4	Assignment/
membrane separation processes and				Exam/ Quiz
its application in process industries				
Ability to select the suitable	Investigation	PO2,	L5	Exam/
separation technique for solid and		PO3,		Quiz/Assignme
liquid systems.				nt/Seminar
Ability to exhibit the skill to develop	Design	PO6	L6	Model / Project
membrane process, adsorption		PO9,		
techniques and inorganic separations.				

1	9UCH9	924NUCLEAR SCIENCE &				
TECHNOLOGY			L	Т	Р	С
OBJECTIVES The course is simed to						
It wi	ll Prom	to the exchange of ideas and research within the				
nucle	ear/ator	nic science community. Responding to global energy and	2	1	0	3
envii	ronmen	tal needs and objectives through the study of nuclear				
scier	nce, tecl	hnology and resources.				
MO	DUL E	TOPICS			LH	Irs
Ι	Image:					
II A NUCLEAR FORCES scattering cross-section, ortho & para hydrogen states,Nuclear forces, spin dependence, scattering, Existence of repulsive core inside a nucleon. Binding energy and nuclear stability.			9			
III A NUCLEAR REACTIONS Kinematics, Direct and Compound Nucleus Reactions, Energetic and general cross section behavior in nuclear reactions.				9	,	
IV A RADIOACTIVE DECAYS Fermi's theory of beta decay, determination of mass of neutrino, Radiation processing of food and allied products, applications of radio isotopes in Industry and Agriculture, Industrial radiotracer applications in Ground water exploration, Desalination.			9	,		
V	VANUCLEAR MODEL Liquid drop Model, Nuclear Fission, Shell Model, Spin-Orbit interaction. Application of Shell Model.			9		
			Т	otal Hours	4	5
			1			-

Text Books

- 1. Kenneth S. Krane, Introductory Nuclear Physics. Hoboken: John Wiley & Sons, Inc.
- 2. Walter E. Meyerhof, Elements of Nuclear Physics. New York: McGraw-Hill.
- 3. R.R. Roy & B.P. Nigam, Nuclear Physics.

Reference Books

1. Bernard L. Cohen, Concepts of Nuclear Physics. New York: McGraw-Hill.

		COURSE	OUT	COMES			
The st	udents have the						
CO 1	Ability to identify basic nuclear properties and outline their theoretical descriptions.						
CO 2	Ability to evaluate the differ	ent models of nuclear	structu	ure.			
CO 3	Ability to ascertain and analy	yze explain the differe	nt nuc	lear reaction	s their cross sections.		
CO 4	Ability to choose and design	different decay proce	sses th	en prominer	t decay chains.		
CO 5	Ability to select & investigation	te Nuclear science the	n able	to involve in	active research.		
CO 6	Ability to conduct experime	nts using modern tools	5.				
Cours	e Outcomes Mapping with	Bloom's Taxonomy a	nd Pr	ogramme O	utcomes		
	Course Outcome	Skill	PO	Bloom's Taxonom y	Assessment Tools to measure CO		
CO1	Ability to identify basic nuclear properties and outline their theoretical descriptions.	Remember/Underst and	-	L1/L2	Exam/Assignment/Seminar/Quiz		
CO2	Ability to evaluate the different models of nuclear structure.	Evaluate	PO 4	L5	Exam/Assignment/Seminar/Quiz/Lab/P roject		
CO3	Ability to ascertain and analyze explain the different nuclear reactions their cross sections.	Analyze	PO 2	L4	Exam/Assignment/Seminar/Quiz/Lab/P roject		
CO4	Ability to choose and design different decay processes then prominent decay chains.	Design	PO 3	L6	Mini Project/Assignment/Quiz/Lab/Exam		
CO5	Ability to select & investigate Nuclear science then able to involve in active research.	Investigate	PO 4	L5	Assignment/Lab/Exam/Seminar		

CO6	Ability to conduct	Modern Tools	PO	L3	Lab/Project
	experiments using modern		5		
	tools.				

Course Level Assessment Questions

Course Outcome 1 (CO1):

- 9. Write a note on importance of basic properties of the nucleus and nuclear radiations.
- 10. Explain the principle of deuteron bound state wave function & energy.
- 11. With a neat sketch, explain about the types of nucleus.
- 12. Distinguish between the importance of two nucleon problem.

Course Outcome 2 (CO2):

- 13. Evaluate the Existence of repulsive core inside a nucleon.
- 14. Derive an expression of structure of nucleus.
- 15. Explain how will you find out the nuclear stability.
- 16. Discuss in detail about the Binding energy of nucleus.

Course Outcome 3 (CO3):

- 13. Analyze the Direct and Compound Nucleus Reactions.
- 14. Find out the different types of Nucleus Reactions.
- 15. Illustrate the measure of Kinematics energy of Nucleus Reactions.
- 16. Explain in detail about the principle of Energetic and general cross section behavior in nuclear reactions.

Course Outcome 4 (CO4):

- 13. Design a Radiation processing of food and allied products.
- 14. Elaborate a Principles at determination of mass of neutrino.
- 15. Discuss about the different types of Fermi's theory of beta decay,
- 16. With a neat sketch explain about the Industrial radiotracer applications in

Ground water exploration.

Course Outcome 5 (CO5):

- 9. Find out the Spin-Orbit interaction.
- 10. How to obtain the Liquid drop Model.
- 11. Explain in detail about the nuclear model.
- 12. Discuss in detail about the Application of Shell Model.

10UCH025 FLECTROCHEMICAL ENCINEERING		L	Т	Р	С	
1900	11723			1	0	3
MOL	MODULE TOPICS				LE	Irs
I	Α	Review basics of electrochemistry: Faraday's law - Nernst p Galvanic cells – Polarography, The electrical double layer: 941 electrochemical processes –Electrocapillary curve – Helmoltz lay –Steven's layer – fields at the interface.	otenti t's ro er – C	al – le in Guoy	9)
п	A	Mass transfer in electrochemical systems: diffusion controlled electrochemical reaction – the importance of convention and the concept of limiting current. over potential, primary-secondary current distribution – rotating disc electrode.				
III	A	Introduction to corrosion, series, corrosion theories derivation of current relations of activities controlled and diffusion controlled process. Potential-pH diagram, Forms of corrosion- definition, fa control methods of various forms of corrosion-corrosion control industrial boiler water corrosion control – protective coatings –Va inhibitors – cathodic protection, sacrificial anodes – Paint remover	poter corre actors measu upor p s.	ntial- osion and ures- bhase	9)
IV	А	Electro deposition – electro refining – electroforming – electro polishing – anodizing – Selective solar coatings, Primary and secondary batteries – types of batteries, Fuel cells.)
VAElectrodes used in different electrochemical industries: Metals-Graphite – Lead dioxide – Titanium substrate insoluble electrodes – Iron oxide – semi conducting type etc. Metal finishing-cell design. types of electrochemical reactors, batch cell, fluidized bed electrochemical reactor, filter press cell, Swiss roll cell, plug flow cell, design equation, figures of merits of different type of electrochemical reactors.			9)		
		Tot	al H	ours	4	5
Text I 1. Pick 2. New	Books ket, " El wman, J	ectrochemical Engineering ", Prentice Hall. 1977. . S., " Electrochemical systems ", Prentice Hall, 1973.				

Reference Books

1. Barak, M. and Stevenge, U. K., " Electrochemical Power Sources - Primary and Secondary Batteries" 1980

2. Mantell, C.," Electrochemical Engineering ", McGraw Hill, 1972.R.Subramanian, "Professional Ethics ",Oxford University Press, Reprint, 2015.

	COURSE OUTCOMES
The stu	dents have the
CO1	Understanding on aspects of electrochemistry -

CO2	Understanding on the electrochemical kinetics,						
CO3	Understanding on electrochemical reaction, concept of limiting current. Over potential						
CO4	Understanding the causes of and the mechanisms of various types of corrosion,						
CO5	Apply the concepts involved in electro p	rocess and des	ign of	batteries, fuel	cell and		
	electrochemical reactors						
CO6	Understanding on the mechanism of corr	osion.					
Course	<mark>e Outcomes</mark> Mapping with Bloom's Taxo	onomy and Pr	ogran	me Outcome	S		
	Course Outcome	Skill	PO	Bloom's	Assessment		
				Taxonomy	Tools to measure CO		
CO1	Understanding on aspects of	Remember/	-	L1/L2	Exam/Assignme		
	electrochemistry	Understand			nt/Seminar/Quiz		
CO2	Understanding on the electrochemical	Remember/	-	L1/L2	Exam/Assignme		
	kinetics	Understand			nt/Seminar/Quiz		
CO3	Understanding on electrochemical	Pomombor/		I 1/I 2	/Lab/Project		
005	reaction concept of limiting current	Understand	-	L1/L2	nt/Seminar/Ouiz		
	Over potential				/Lab/Project		
CO4	Understanding the causes of and the	Remember/	_	L1/L2	Mini		
001	mechanisms of various types of	Understand			Project/Assignm		
	corrosion				ent/Quiz/Lab/Ex		
					am		
CO5	Apply the concepts involved in electro	Apply	PO	L3	Assignment/Lab		
	process and design of batteries, fuel		2		/Exam/Seminar		
	cell and electrochemical reactors						
CO6	Understanding on the mechanism of	Remember/		L1/L2	Assignment/Lab		
	corrosion.	Understand			/Exam/Seminar		

19UCH861 MATLAB FOR CHEMICAL ENGINEERING

L T P C 0 0 2 1

OBJECTIVES

- To explain basics of numerical methods calculations involved in chemical process systems.
- To know in depth of mathematical modeling of a given physical or chemical systems with the simulation.

Course Contents

- 1. Basics of MATLAB,
- 2. Data Types in MATLAB
- 3. Random Numbers
- 4. Variables and Variable Names
- 5. Suppressing Output
- 6. Built-in Functions in MATLAB Go through the Function list
- 7. Vectors and Arrays
- 8. Plotting in MATLAB 9. Loops in MATLAB
- 10. Data Transfer in MATLAB
- 11. Solution of System of Linear Algebraic Equations using MATLAB
- 12. Solution of Single Non-linear Algebraic Equation using MATLAB
- 13. Solving Single Ordinary Differential Equations (ODEs) in MATLAB
- 14. Solving Simultaneous ODEs in MATLAB
- 15. Solving Mixed Differential and Algebraic Equations in MATLAB
- 16. Development of Graphical User Interfaces (GUI) in MATLAB

TOTAL: 30 PERIODS

OUTCOMES

Upon completion of the course students will,

- Understand the importance and use mathematical modeling and numerical calculations in chemical or physical systems.
- Able to construct models using MATLAB simulation software.
- Understand and use methods for model simplification.

TEXT BOOK:

1. Mathematical modeling in Chemical Engineering by Anders Rasmuson, Bengt Andersson, Louise Olsson, Ronnie Andersson, Cambridge University Press 2014, New York.

REFERENCE BOOK:

1. Numerical Methods Applied to Chemical Engineering by Frederick bernardin, MIT Open CourseWare, Fall 2006.

19UCH862 SIMULATION ON PROCESS FUNDAMENTALS L T P C

0 0 2 1

Course Objective:

This course is designed to provide knowledge on Industrial operations and training in the operation of major equipment deployed in process industry. It includes classroom instructions, as well as hands-on training with a PC based, full scope Simulator. The classroom instructions cover all major unit operations and their controls. Simulator training includes startup from cold condition to full load, load maneuvering, and shutdown from full load to cold condition, major malfunctions, and efficient operations of various equipment.

List of Experiments

- 1) Introduction to process control, Control objectives and benefits, Distributed control and DCS operation, Hands-on training on Simulator.
- 2) Automatic Control Systems (PID Control, On-Off, Flow, Level, Pressure, Temperature Controls), Advanced Control Systems (Cascade, Split Range and Feed Forward & Feed Back Controls and 3-element boiler level control)
- 3) Hands-on training on Simulator
- 4) Heat exchangers Heat transfer calculation, Exercise on simulator
- 5) Pumps Flow in a pump, head, characteristic curve, NPSH, Exercise on simulator
- 6) Compressor Gas compression, discharge temperature, power, Performance, characteristic, Surge curve, Exercise on simulator
- 7) Distillation Principles of distillation , Configuration of distillation column, Operating parameters, Dynamics, Malfunctions, Distillation startup
- 8) Furnace operation Combustion principle , Operating parameters , Dynamics, Exercise on simulator, Start-up , Shutdown
- 9) Boiler Operating parameters, Dynamics, Exercise on simulator, Start-up
- 10) Reactors CSTR, PFR & Fixed bed reactor Theory , Exercise on simulator, Start-up , Shutdown

TOTAL: 30 PERIODS

OUTCOMES:

After completion of the course students will able to

Understand the fundamental knowledge on process control and instrumentation, operations of major unit operations in a process plant.

Understand the trouble shooting, emergency handling, startup and shutdown operations of the unit operations.

19UCH863 SUGARCANE PROCESSING AND ITS PRODUCTS L T P C

2001

AIM:

• To attain a broad comprehension of sugarcane processing and its products **OBJECTIVES:**

- To explain various sources of sugar.
- To know in depth of its principles, types, methods of production, protection of environment, environmental impact of the unit.

UNIT I

Introduction, classification of sugar, composition of raw materials; Different types of raw materials used, various methods are available for manufacturing of sugar; Details of the process, advantages and disadvantages of the various processes used; Equipments and machineries are used in the process.

UNIT II

Quality of sugar, Sugar analysis, Refining, crystallization, packing, storing, shipping, Sugar derivatives, starch, uses of sugar, by products from sugar processing, solis, water and air pollution control applicable in the process, Quality of product

TOTAL: 15 PERIODS

OUTCOMES:

After the completion of course,

- Students are able to understand the various process of sugar manufacturing operations in details.
- Students are able to understand in depth of its principles, types, methods of production, protection of environment, environmental impact of the Sugar processing unit.

TEXT BOOKS:

- 1. Chemical Process Indusries by R.N. Shreve and T. Austin, McGraw Hill Book company, 5th Edition, Singapore.
- 2. Outline of Chemical Technology by C.E. Dryden, Affiliated East West press, New Delhi,

REFERENCE BOOKS:

- 1. Encyclopedia of Chemical Technology by Kirk & Othmer, Wiley & Sons, New York.
- 2. Hand Book of Sugar Manufacture by Newis Lanrence. N.J., Oxford University Press.

8

7

AIM:

• To attain a broad comprehension of cement manufacturing processing and its products.

OBJECTIVES:

- To explain various sources of cement
- To know in depth of its principles, types, methods of production, protection of environment, environmental impact of the cement manufacturing unit.

UNIT I

Introduction, Classification of cements, compositions of raw materials, various methods for manufacturing of cement, advantages and disadvantages of the various processes used; different types of raw materials used; Equipments and machineries are used in the process; solids and air pollution control applications in the process.

UNIT II

9

7

Clinker chemistry, clinker formation, raw materials proportions, Hydration, cement paste structure and concrete properties, unit operations, chemical conversions, energy requirements, compounds in cements, setting and hardening of cement, special cements, Quality of cement, Cement Analysis, packing, storing, shipping, by products from cement processing, water, land and air pollution control applicable in the process, Quality of the product.

TOTAL: 15 PERIODS

OUTCOMES:

After the completion of the course,

- Students are able to understand the various process of cement manufacturing operations in details.
- Students are able to understand of its principles, types, methods of production, protection of environment, environmental impact of the cement manufacturing unit

TEXT BOOKS:

- 1. Chemical Process Indusries by R.N. Shreve and T. Austin, McGraw Hill Book company, 5th Edition, Singapore.
- 2. Outline of Chemical Technology by C.E. Dryden, Affiliated East West press, New Delhi,

REFERENCE BOOKS:

- 1. Encyclopedia of Chemical Technology by Kirk & Othmer, Wiley & Sons, New York.
- 2. Hand Book of Cement Manufacture by Alexander. K. I. Tata McGraw Hill Publishing Company.

L T P C 2 0 0 1

19UCH865RECLAMATION OF WASTE LUBRICATING OILSL T P CAND ITS PRODUCTS2 0 0 1

AIM:

• To attain a broad comprehension of Reclamation of Waste Lubricating Oils and its products.

OBJECTIVES:

- To explain basics of reclamation process systems.
- To know in depth of its types, process and design of reclamation of waste lubricating oils.

UNIT I

Introduction to engine oil grade and uses, analysis of oils, physico chemical properties of oils, carbon residue in oil and viscosity characteristics. Basic analysis parameters like acid number, iodine number, base number, etc., Sludge analysis and analysis of waste engine oils, use of chemicals for reclamation.

UNIT II

6

9

Various methods for reclamation waste lube oils process, economics of the process and its products

TOTAL: 15 PERIODS

OUTCOMES:

- Understand the basics of reclamation processes
- Understand in depth of its types and design of various pyrotechnics products and its composition.

REFERENCE BOOK:

1. Hand book of Waste Oil Reclamation by Walter Wanes. D.J.M.M, McGraw Hill Publishing co., Singapore.

19UCH866

8

7

AIM:

• To attain a broad comprehension of pollution control engineering to the environment

OBJECTIVES:

To enable students to learn about Air, Water pollution, effects of air, water pollution, Global effects, Sampling of pollutants, Meteorology and air and water pollution, Atmospheric stability, Plume rise and dispersion and Prediction of air and water quality

UNIT I INTRODUCTION, PROCESS ANALYSIS AND SELECTION

Air pollution regulatory framework history – Regulatory system – Laws and Regulations – Clean air act – Provisions for recent developments.

Terminology, regulations, health and environment concerns in waste management, constituents, Components of flue gases and waste water flows – Analysis of data – Reactors used in waste water and flue gases treatment – Mass Balance Analysis – Process Selection.

UNIT II POLLUTION PREVENTION

Mass exchange network synthesis for pollution control and minimization implications of environmental constraints for process design, policies for regulation of environmental impacts.

Concepts of common effluent treatment; Environmental Legislations, Role of Government and Industries.

TOTAL: 15 PERIODS

OUTCOMES:

Upon completion of the course,

• Students would have knowledge on physical/chemical/biological characteristics and the evaluation technique for pollutants

TEXTBOOKS:

- 1. Air Pollution Control Equipment by Louis Theodore, Burley intuscence 2008.
- 2. Air Pollution Control by C.D. Cooper and F.C. Alley Wairland Press III Edition 2002.
- 3. Industrial Waste Water Management Treatment and Disposal of Waste water, McGraw Hill III edition, 2008.

REFERENCE BOOK:

1. Kirk and Othmer, Chemical Technology Hand Books, IV Edn, (1994)

19UCH867 ENZYMES FOR ENVIRONMENTAL APPLICATIONS LTPC 2001

AIM:

• To attain a broad comprehension of Enzymes used in environmental applications

OBJECTIVES:

- To explain basics of enzymes for environmental applications
- To know in depth of its principles, treatment methods for various types of waste water effluents

UNIT I

7

Nature, Enzyme: Characteristics, Substrate Binding, Reactors, Immobilization, Sensors: Types of Pollutants, Quality Product After Treatment, Treating, Aromatic Pollutants

UNIT II

8 Treating methods for pesticide residues, heavy metals, solid wastes, surfactants in effluents, food process industry wastes, water treatment

TOTAL: 15 PERIODS

OUTCOMES:

- Understand the various types of enzymes for environmental applications process
- Understand in knowledge for application of enzymes in industrial waste water effluents.

- 1. Enzyme Immobilization: Advances in Industry, Agriculture, Medicine and the Environment by Alka Dwevedi, Springer International Publishing, Switzerland 2016.s
- 2. Enzymes in the Environment: Activity, Ecology, and Applications by Richard G. Burns, Richard P. Dick, CRC Press, 2002, Marcel Dekker, Inc., New York, Basel.

19UCH868RECLAMATION OF PRESS MUD WAXL T P C2 0 0 1

AIM:

• To attain a broad comprehension of reclamation processes for press mud wax

OBJECTIVES:

- To explain basics of reclamation process press mud wax
- To know in depth of its types, process and design of reclamation of press mud wax

UNIT I

Introduction to press mud wax and uses, analysis of press mud, physic chemical properties of press mud, characteristics of press mud. Basic analysis parameters, sludge analysis and analysis of press mud, use of chemicals for reclamation, processing of press mud.

UNIT II

Various methods for reclamation press mud wax process, economics of the process and its products

TOTAL: 15 PERIODS

9

6

OUTCOMES:

- Understand the basics of reclamation processes of press mud
- Understand in depth of its types and design of various methods and products and its composition of press mud

REFERENCE BOOK:

1. Hand Book of press mud reclamation by John. Fridrick. J.L., Koes Hudny. I. L., McGraw Hill Publishing Co.

19UCH869

AIM:

• To attain the basics of Air Pollution Sensors

OBJECTIVES:

- To explain basics of Air Pollution Control Sensor Systems
- To know in depth of its principles, types, materials, process and design of water purification
- To enable the students to learn about sensors for air pollution effects, sampling of pollutants, plume rise and dispersion and prediction of air quality

UNIT I

7

8

Introduction, quality of air, effect of air pollutants, types of air sensors, Sensors for air pollution, basics of quality of air, types of air sensors

UNIT II

Description of personal exposure monitoring, types of pollutants to characterize sensors, environmental condition for air pollution and health implications, parameters used to design sensors, economics in the design

TOTAL: 15 PERIODS

OUTCOMES:

Upon completion of the course the students,

- Would have the knowledge of ambient sensors for air pollution, its sources and design
- Able to understand the basics of air pollution sensors
- Able to understand in depth of air pollution, effect of air pollution, characteristics and monitoring and design of sensors for air pollution.

TEXT BOOKS:

- 1. Air Pollution Control Equipment by Louis Theodore, Burley intuscence 2008.
- 2. Air Pollution Control by C.D. Cooper and F.C. Alley Wairland Press III Edition 2002.
- 3. Air pollution control engineering by Noel de Nevey McGraw Hill, co.
- 4. Air pollution controlengineering by de Nevey, N., McGraw Hill, Inc., 2000
- 5. Air pollution control : A design approach by Cooper, C.D. and Alley, F.C. Waveland Press, 2002.

- 1. Chemical Technology Hand Book by Kirk and Othmer, IV edn 1994
- 2. Fundamentals of air pollution by Vallero, A., Daniel A., (Electronic resources) Amsterdam.

19UCH870WASTE RECYCLING FROM PULP AND TEXTILE MILLSL T P C2 0 0 1

AIM:

• To attain a broad comprehension of water recycling from pulp and textile mills systems

OBJECTIVES:

- To explain various water recycling from pulp and textile mills systems
- To know in depth of its principles, various methods of processing of waste water from Pulp and Textile mills

UNIT I

Characterization of waste water from pulp and textile mills, composition of waste water, various treatment methods of waste water, products and by products, quality of water, sludge disposal, Evaluation, classifications and characterization of waste water, Treatment types o waste water: Preliminary, Primary, Secondary and Tertiary methods, Advantages and Disadvantages of the methods

UNIT II

Theory and practice of aeration in waste water treatment, Sludge treatment: Sludge disposal, activated sludge process, other methods and products and by products.

TOTAL: 15 PERIODS

OUTCOMES:

After completion of the course, Students are

- Able to understand the various water recycling from pulp and textile mills mehods
- Able to understand in depth of its principles, various methods of processing of waste water from pulp and textile mills.

TEXTBOOKS:

- 1. Introduction to waste water treatment processes by R.S. Ramlho, Academic press, New York.
- 2. Chemical Process Industries by R.N. Shreves and T. Austin, McGraw Hill Book Company, 5th Edition, Singapore.
- 3. Outline of Chemical Technology by C.E. Dryden, Affiliated East West Press, New Delhi

REFERENCE BOOKS:

- 1. Encyclopedia of Chemical Technology by Kirk and Othmer, Wiley & Sons, New York.
- 2. Industrial Pollution Control Hand Book by Lund J.E., McGraw Hill Publishers 1971.
- 3. American Public Health Association Inc., Standard methods for the examination of water & Waste Water- New York.

6

9

5

10

AIM:

• To attain a broad comprehension of Membrane technology for water purification process.

OBJECTIVES:

- To explain basics of membrane technology process systems
- To know in depth of its principles, types, materials, process and design of Membranes for water purification

UNIT I

Introduction, principles, theory -Membrane transport theory, membranes and modules, various types

UNIT II

Advanced processes, membrane reactors and application Reverse Osmosis, Ultra filtration and micro filtration, gas serration and per evaporation, ion exchange membranes, advance dialysis.

TOTAL: 15 PERIODS

OUTCOMES:

- Understand the basics of membrane technology
- Understand in depth of its types, principles, materials used, advanced methods, applications of membrane technology.

TEXTBOOKS:

- 1. Marcel Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publications.
- 2. Coulson and Richardson's Chemical Engineering, Volume 2, Elesvier.
- 3. S.P. Nunes and K.V. peinemann, Membrane Technology in the Chemical industry, Wiley VCH.
- 4. R. Rautanbach and R. Albrecht, Membrane Process, John Wiley & Sons.

- 1. R.Y.M. Huang, Perevaporation Membrane Separation Processes, Elsevier.
- 2. J.G. Crespo, K.W. Boddekes, Membrane Processes in Separation and Purification, Kluwer Academic Publications
- 3. Larry Ricci and the staff of Chemical Engineering Separation Techniques, McGraw Hill Publications
- 4. Richard W. Baker, Membrane technology and Applications, John Wiley & Sons, Ltd.

19UCH872	PYROTECHNICS	LTPC
		2001

AIM:

• To attain a broad comprehension of Pyrotechnology systems used for various applications.

OBJECTIVES:

- To explain basics of pyrotechnology systems
- To know in depth of its types and design of pyrotechnics systems

UNIT I

Classification of energetic materials and its compositions, basic chemistry, uses of ire, how to control fire, Environmental effects and concerns

UNIT II

8

7

Pyrotechnic oxidizers, fuels, binders, other ingredients, important properties, ignition and propagation of reaction; characterization of pyrotechnics, pyrotechnics applications: heat generation, color/light generation, smoke generation, sound generation.

TOTAL: 15 PERIODS

OUTCOMES:

- Understand the basics of pyrotechnics
- Understand in depth of its types and design of various pyrotechnics products and its composition.

- 1. Hand Book of Pyrotechnics by john Wales. F.R., McGraw Hill Publishing Co., Singapore.
- 2. Pyrotechnics by George Weingart, 2 Edm, 1992, Oxford University Press.
- 3. Principles of Pyrotechnics by A.A. Shidlovskiy: ISBN-13:978-0929931135.